Страница: << 58 59 60 61 62 63 64 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

На столе лежат n монеток. Некоторые из них лежат вверх решкой, а некоторые – гербом. Определите минимальное число монеток, которые нужно перевернуть, чтобы все монетки были повернуты вверх одной и той же стороной.

Входные данные

В первой строке входного файла содержится натуральное число \(n\) – количество монет (1 ≤ \(n\) ≤ 100).

В каждой из следующих \(n\) строк содержится одно целое число – 1 если монетка лежит вверх решкой или 0 если вверх гербом.

Выходные данные

В выходной файл выведите минимальное количество монет, которые нужно перевернуть.

Примеры
Входные данные
5
1
0
1
1
0
Выходные данные
2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

«Ну не гномы, а наказание какое-то!», – подумала Белоснежка, в очередной раз пытаясь уложить гномов спать. Одного уложишь – другой уже проснулся! И так всю ночь.

У Белоснежки \(n\) гномов, и все они очень разные. Она знает, что для того, чтобы уложить спать \(i\)-го гнома нужно \(a_i\) минут, и после этого он будет спать ровно \(b_i\) минут. Помогите Белоснежке узнать, может ли она получить хотя бы минутку отдыха, когда все гномы будут спать, и если да, то в каком порядке для этого нужно укладывать гномов спать.

Например, пусть есть всего два гнома, \(a_1\) = 1, \(b_1\) = 10, \(a_2\) = 10, \(b_2\) = 20. Если Белоснежка сначала начнет укладывать первого гнома, то потом ей потребуется целых 10 минут, чтобы уложить второго, а за это время проснется первый. Если же она начнет со второго гнома, то затем она успеет уложить первого и получит целых 10 минут отдыха.

Входные данные

Первая строка входного файла содержит число \(n\) (1 ≤ \(n\) ≤ \(10^5\)), вторая строка содержит числа \(a_1\),\(a_2\),… \(a_n\), третья – числа \(b_1\),\(b_2\),… \(b_n\) (1 ≤ \(a_i\), \(b_i\) ≤ \(10^9\)).

Выходные данные

Выведите в выходной файл \(n\) чисел – порядок, в котором нужно укладывать гномов спать. Если Белоснежке отдохнуть не удастся, выведите число -1.

Примеры
Входные данные
2
1 10
10 20
Выходные данные
2 1
Входные данные
2
10 10
10 10
Выходные данные
-1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Петя и Вася играют в очередную интересную игру. У них есть лист бумаги, на котором изображены \(n\) кружочков, помеченных числами от 1 до \(n\). Участники по очереди рисуют стрелочки, соединяющие кружочки. При этом стрелочку из кружочка a в кружочек \(b\) разрешено проводить, если выполнены два условия:

1. еще нет стрелочки из \(a\) в \(b\);

2. нельзя дойти по стрелочкам из \(b\) в \(a\).

Например, в позиции на рис. 1 можно поставить одну из трех стрелочек (рис. 2).

Проигрывает тот, кто не может сделать ход.

Петя решил написать программу, играющую в эту игру. Для этого он хочет сначала посчитать, сколько различных позиций может получиться на доске.

Входные данные

Входной файл содержит одно число \(n\) (1 ≤ \(n\) ≤ 100).

Выходные данные

Выведите в выходной файл число возможных позиций без ведущих нулей.

Пояснение к примеру

Примеры
Входные данные
3
Выходные данные
25
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Паук и паучиха плывут по озеру на двух веточках. Плавать они не умеют, поэтому смогут встретиться только тогда, когда веточки соприкоснутся.

Считая, что веточки имеют форму отрезков, и что они плывут с постоянными скоростями, определите, сколько осталось ждать встречи несчастным членистоногим.

Входные данные

Входной файл содержит 12 чисел: \(x_1\), \(y_1\), \(x_2\), \(y_2\), \(x_3\), \(y_3\), \(x_4\), \(y_4\), \(v_{1x}\), \(v_{1y}\), \(v_{2x}\), \(v_{2y}\). Координаты вершин первого отрезка: (\(x_1\), \(y_1\)) и (\(x_2\), \(y_2\)), координаты вершин второго отрезка: (\(x_3\), \(y_3\)) и (\(x_4\), \(y_4\)), скорость первого отрезка (\(v_{1x}\), \(v_{1y}\)), скорость второго отрезка (\(v_{2x}\), \(v_{2y}\)). Все числа целые и не превосходят по модулю \(10^4\). В начальный момент времени веточки не соприкасаются. Гарантируется, что веточки имеют ненулевую длину.

Выходные данные

Выведите в выходной файл время до ближайшего момента, когда веточки соприкоснутся, с ошибкой не более \(10^{-4}\). Если веточки не соприкоснутся никогда, выведите число -1.

Примеры
Входные данные
0 0 -1 3
4 4 7 7
3 0
0 -1
Выходные данные
1.6
Входные данные
0 0 -1 3
4 4 7 7
1 0
0 -3
Выходные данные
-1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Вася любит решать головоломки со спичками. Чаще всего они формулируется следующим образом: дано изображение \(A\), составленное из спичек; переложите в нем минимальное количество спичек так, чтобы получилось изображение \(B\).

Например, из номера текущего командного чемпионата школьников Санкт-Петербурга по программированию, можно получить ромб с диагональю, переложив всего три спички.

Головоломки, которые решает Вася, всегда имеют решение. Это значит, что набор спичек, используемый в изображении \(A\), совпадает с набором спичек, используемым в изображении \(B\). Кроме того, в одном изображении никогда не встречаются две спички, у которых есть общий участок ненулевой длины (то есть спички могут пересекаться, но не могут накладываться друг на друга).

Вася устал решать головоломки вручную, и теперь он просит вас написать, программу, которая будет решать головоломки за него. Программа будет получать описания изображений \(A\) и \(B\) и должна найти минимальное количество спичек, которые надо переложить в изображении \(A\), чтобы полученная картинка получалась из \(B\) параллельным переносом.

Входные данные

В первой строке входного файла содержится целое число \(n\) – количество спичек в каждом из изображений (1 ≤ \(n\) ≤ 1000).

В следующих n строках записаны координаты концов спичек на изображении \(A\). Спичка номер \(i\) описывается целыми числами \(x_{1i}\), \(y_{1i}\), \(x_{2i}\), \(y_{2i}\) – координатами ее концов. Следующие \(n\) строк содержат описание изображения \(B\) в таком же формате. Набор длин этих спичек совпадает с набором длин спичек с изображения \(A\).

Все координаты по абсолютной величине не превосходят \(10^4\). Все спички имеют ненулевую длину, то есть \(x_{1i}\) ≠ \(x_{2i}\) или \(y_{1i}\) ≠ \(y_{2i}\).

Выходные данные

Выведите в выходной файл минимальное количество спичек, которые следует переложить, чтобы изображение \(A\) совпало с изображением \(B\), с точностью до параллельного переноса.

Примеры
Входные данные
5
0 0 1 2
1 0 0 2
2 0 2 2
4 0 3 2
4 0 5 2
9 -1 10 1
10 1 9 3
8 1 10 1
8 1 9 -1
8 1 9 3
Выходные данные
3

Страница: << 58 59 60 61 62 63 64 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест