Каждый раз, когда в мире происходит значимое событие, наша реальность разветвляется на несколько — в зависимости от исхода этого события. После этого существует уже не только наша основная реальность, но и ответвившиеся от неё в моменты появления разных исходов.
Однажды один архимаг решил сделать мир лучше. Такая грандиозная задача не под силу одному архимагу, поэтому он решил найти самого себя ещё в K реальностях и выполнить эту задачу вместе. Проведённое теоретическое исследование показало, что, кроме реальности, в которой находится именно он, существует ещё N - 1 реальностей. Для удобства они были занумерованы числами от 1 до N, при этом его собственная реальность имеет номер 1, а посетить ему необходимо реальности с номерами 2, 3, ..., K + 1.
Как уже говорилось, каждая реальность когда-то ответвилась от некоторой другой, за исключением одной Начальной реальности, которая существовала всегда (её номер может оказаться каким угодно; считается, что она появилась в момент времени 0). Исследование показало, что реальность с номером i ответвилась от реальности с номером Pi в момент времени Ti. Из каждой реальности с номером i архимаг может переместиться
Требуется найти минимальное количество энергии, которое потребуется архимагу, чтобы, начав в реальности с номером 1, посетить все реальности с номерами от 2 до K + 1 (в любом порядке) и затем вновь вернуться в 1. Любую реальность при этом разрешается посещать сколько угодно раз.
Сначала вводятся два целых числа N и K (0 ≤ K < N ≤ 100 000): количество доступных реальностей и количество реальностей, которые необходимо посетить. Далее идёт N пар целых чисел, i-я пара — это Pi и Ti (1 ≤ Pi ≤ N, 0 ≤ Ti ≤ 106; для Начальной реальности Pi = Ti = 0).
Гарантируется, что ответвившаяся реальность появилась строго позже породившей (Ti > TPi), и что маг может при желании добраться до любой из N реальностей.
Выведите единственное число E — минимальную возможную энергию, которая потребуется архимагу для путешествия.
5 2 4 2 4 6 1 9 0 0 1 7
30
На День учителя Вася решил купить букет цветов. В магазине продаются ромашки по A рублей за штуку и гладиолусы по B рублей за штуку (A < B). У Васи есть C рублей. Он хочет составить букет из максимально возможного количества цветов, и при этом потратить как можно больше денег. Другими словами, из всех букетов с максимально возможным количеством цветов он хочет выбрать самый дорогой, но не дороже C рублей. Помогите ему вычислить стоимость такого букета.
Вводятся три целых числа A, B, C (1 ≤ A < B ≤ 100, 0 ≤ C ≤ 1000).
Выведите одно число — стоимость самого дорогого букета из максимального количества цветов.
В первом тесте искомый букет состоит из четырёх ромашек и одного гладиолуса. Во втором — только из трёх ромашек.
2 3 11
11
3 5 10
9
Компания из M человек пришла в пиццерию. Посовещавшись, они решили заказать одну большую пиццу с K начинками. Пицца представляет собой круг, поделённый на K равных секторов, в каждом из которых находится своя начинка. Пиццу подают ещё не разрезанной.
Друзья попросили официанта разрезать пиццу на M равных секторов, по одному куску на человека, так, чтобы как можно большему количеству людей достался кусок по крайней мере с двумя начинками.
Помогите официану определить, какому именно количеству людей достанется больше одной начинки, если резать пиццу наиболее оптимально.
Вводятся два целых числа K, M (1 ≤ K ≤ 100, 1 ≤ M ≤ 100) — количество начинок в пицце и количество человек в компании соответственно.
Выведите количество человек, которым достанется более одной начинки в наилучшем случае.
В первом тесте каждому достанется по две начинки, если резать как угодно, но не по границам секторов с начинками.
Во втором тесте не важно как резать: в любом случае обоим достанется по половине пиццы, в каждой из которых будет больше одной начинки.
3 3
3
3 2
2
В этой задаче Вася готовится к олимпиаде. Учитель дал ему N (1 ≤ N ≤ 100) задач для тренировки. Для каждой из этих задач известно, каким умением ai нужно обладать для её решения. Это означает, что если текущее умение Васи больше либо равно заданного умения для задачи, то он может ее решить. Кроме того, после решения i-й задачи Васино умение увеличивается на число bi.
Исходное умение Васи равно A. Решать данные учителем задачи он может в произвольном порядке. Какое максимальное количество задач он сможет решить, если выберет самый лучший порядок их решения?
Сначала вводятся два целых числа N, A (1 ≤ N ≤ 100, 0 ≤ A ≤ 100) — количество задач и исходное умение. Далее идут N пар целых чисел ai, bi (1 ≤ ai ≤ 100, 1 ≤ bi ≤ 100) — соответственно сколько умения нужно для решения i-й задачи и сколько умения прибавится после её решения.
Выведите одно число — максимальное количество задач, которое Вася может решить.
В первом тесте Вася сможет решить все задачи, выбрав, например, порядок 2, 1, 3. Во втором тесте ему необходимо сначала разобраться с 1 и 3 задачами, после чего он осилит 2.
3 2 3 1 2 1 1 1
3
4 1 1 10 21 5 1 10 100 100
3
Глеб обожает шоппинг. Как-то раз он загорелся идеей подобрать себе майку и штаны так, чтобы выглядеть в них максимально стильно. В понимании Глеба стильность одежды тем больше, чем меньше разница в цвете элементов его одежды.
В наличии имеется N (1 ≤ N ≤ 100 000) маек и M (1 ≤ M ≤ 100 000) штанов, про каждый элемент известен его цвет (целое число от 1 до 10 000 000). Помогите Глебу выбрать одну майку и одни штаны так, чтобы разница в их цвете была как можно меньше.
Сначала вводится информация о майках: в первой строке целое число N (1 ≤ N ≤ 100 000) и во второй N целых чисел от 1 до 10 000 000 — цвета имеющихся в наличии маек. Гарантируется, что номера цветов идут в возрастающем порядке (в частности, цвета никаких двух маек не совпадают).
Далее в том же формате идёт описание штанов: их количество M (1 ≤ M ≤ 100 000) и в следующей строке M целых чисел от 1 до 10 000 000 в возрастающем порядке — цвета штанов.
Выведите пару неотрицательных чисел — цвет майки и цвет штанов, которые следует выбрать Глебу. Если вариантов выбора несколько, выведите любой из них.
2 3 4 3 1 2 3
3 3
2 4 5 3 1 2 3
4 3