Темы --> Информатика
    Язык программирования(952 задач)
    Алгоритмы(1657 задач)
    Структуры данных(279 задач)
    Интерактивные задачи(17 задач)
    Другое(54 задач)
---> 113 задач <---
    2003(8 задач)
    2004(9 задач)
    2005(10 задач)
    2006(10 задач)
    2007(19 задач)
    2008(19 задач)
    2009(18 задач)
    2010(18 задач)
    2011(18 задач)
    2012(19 задач)
    2013(19 задач)
    2014(20 задач)
    2015(21 задач)
    2016(20 задач)
Страница: << 16 17 18 19 20 21 22 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Каждый раз, когда в мире происходит значимое событие, наша реальность разветвляется на несколько — в зависимости от исхода этого события. После этого существует уже не только наша основная реальность, но и ответвившиеся от неё в моменты появления разных исходов.

Однажды один архимаг решил сделать мир лучше. Такая грандиозная задача не под силу одному архимагу, поэтому он решил найти самого себя ещё в K реальностях и выполнить эту задачу вместе. Проведённое теоретическое исследование показало, что, кроме реальности, в которой находится именно он, существует ещё N - 1 реальностей. Для удобства они были занумерованы числами от 1 до N, при этом его собственная реальность имеет номер 1, а посетить ему необходимо реальности с номерами 2, 3, ..., K + 1.

Как уже говорилось, каждая реальность когда-то ответвилась от некоторой другой, за исключением одной Начальной реальности, которая существовала всегда (её номер может оказаться каким угодно; считается, что она появилась в момент времени 0). Исследование показало, что реальность с номером i ответвилась от реальности с номером Pi в момент времени Ti. Из каждой реальности с номером i архимаг может переместиться

  • в любую ответвившуюся от неё, то есть в любую j, такую что Pj = i;
  • в Pi, если i — не Начальная реальность.
Другими словами, возможны лишь переходы вида i <-> Pi. На каждый такой переход в любую сторону архимаг затрачивает Ti - TPi > 0 условных единиц энергии.

Требуется найти минимальное количество энергии, которое потребуется архимагу, чтобы, начав в реальности с номером 1, посетить все реальности с номерами от 2 до K + 1 (в любом порядке) и затем вновь вернуться в 1. Любую реальность при этом разрешается посещать сколько угодно раз.

Входные данные

Сначала вводятся два целых числа N и K (0 ≤ K < N ≤ 100 000): количество доступных реальностей и количество реальностей, которые необходимо посетить. Далее идёт N пар целых чисел, i-я пара — это Pi и Ti (1 ≤ Pi ≤ N, 0 ≤ Ti ≤ 106; для Начальной реальности Pi = Ti = 0).

Гарантируется, что ответвившаяся реальность появилась строго позже породившей (Ti > TPi), и что маг может при желании добраться до любой из N реальностей.

Выходные данные

 

Выведите единственное число E — минимальную возможную энергию, которая потребуется архимагу для путешествия.

Примеры
Входные данные
5 2
4 2
4 6
1 9
0 0
1 7
Выходные данные
30
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В этой задаче Вася готовится к олимпиаде. Учитель дал ему N (1 ≤ N ≤ 100) задач для тренировки. Для каждой из этих задач известно, каким умением ai нужно обладать для её решения. Это означает, что если текущее умение Васи больше либо равно заданного умения для задачи, то он может ее решить. Кроме того, после решения i-й задачи Васино умение увеличивается на число bi.

Исходное умение Васи равно A. Решать данные учителем задачи он может в произвольном порядке. Какое максимальное количество задач он сможет решить, если выберет самый лучший порядок их решения?

Входные данные

Сначала вводятся два целых числа N, A (1 ≤ N ≤ 100, 0 ≤ A ≤ 100) — количество задач и исходное умение. Далее идут N пар целых чисел ai, bi (1 ≤ ai ≤ 100, 1 ≤ bi ≤ 100) — соответственно сколько умения нужно для решения i-й задачи и сколько умения прибавится после её решения.

Выходные данные

Выведите одно число — максимальное количество задач, которое Вася может решить.

Примечание

В первом тесте Вася сможет решить все задачи, выбрав, например, порядок 2, 1, 3. Во втором тесте ему необходимо сначала разобраться с 1 и 3 задачами, после чего он осилит 2.

Примеры
Входные данные
3 2
3 1
2 1
1 1
Выходные данные
3
Входные данные
4 1
1 10
21 5
1 10
100 100
Выходные данные
3
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Глеб обожает шоппинг. Как-то раз он загорелся идеей подобрать себе майку и штаны так, чтобы выглядеть в них максимально стильно. В понимании Глеба стильность одежды тем больше, чем меньше разница в цвете элементов его одежды.

В наличии имеется N (1 ≤ N ≤ 100 000) маек и M (1 ≤ M ≤ 100 000) штанов, про каждый элемент известен его цвет (целое число от 1 до 10 000 000). Помогите Глебу выбрать одну майку и одни штаны так, чтобы разница в их цвете была как можно меньше.

Входные данные

Сначала вводится информация о майках: в первой строке целое число N (1 ≤ N ≤ 100 000) и во второй N целых чисел от 1 до 10 000 000 — цвета имеющихся в наличии маек. Гарантируется, что номера цветов идут в возрастающем порядке (в частности, цвета никаких двух маек не совпадают).

Далее в том же формате идёт описание штанов: их количество M (1 ≤ M ≤ 100 000) и в следующей строке M целых чисел от 1 до 10 000 000 в возрастающем порядке — цвета штанов.

Выходные данные

Выведите пару неотрицательных чисел — цвет майки и цвет штанов, которые следует выбрать Глебу. Если вариантов выбора несколько, выведите любой из них.

Примеры
Входные данные
2
3 4
3
1 2 3
Выходные данные
3 3
Входные данные
2
4 5
3
1 2 3
Выходные данные
4 3
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Петя нарисовал на клетчатом листке бумаги красивый рисунок прямоугольной формы. Его младшему брату Васе тоже захотелось порисовать, поэтому он вырезал из того же листка бумаги другой прямоугольник. При этом он не делал лишних разрезов, то есть в результате в листке осталась прямоугольная дырка. Кроме того, линии разреза не проходили (даже частично) по границам рисунка Пети. Более того, по границам рисунка не проходили даже продолжения линий разреза.

Ваша задача – по данным о расположении рисунка и прямоугольной дырки определить, испортил ли Вася рисунок старшего брата, другими словами, есть ли на вырезанном Васей прямоугольнике хотя бы маленький фрагмент рисунка Пети.

Входные данные

Вам даны 8 целых чисел - x1, y1, x2, y2, x3, y3, x4, y4, где (x1, y1) - координаты левого нижнего угла рисунка Пети, (x2, y2) - координаты правого верхнего угла рисунка. Аналогично, (x3, y3) - координаты левого нижнего угла вырезанного Васей прямоугольника, (x4, y4) - координаты правого верхнего угла вырезанного прямоугольника. Гарантируется, что данные прямоугольники невырождены (x1 < x2, y1 < y2 и аналогичные неравенства для второго набора координат). Листок был не очень большим, поэтому каждое число по модулю не превосходит 104.

Выходные данные

Выведите YES, если Вася испортил рисунок, и NO в противном случае.

Примеры
Входные данные
1 1 2 2 3 3 4 4
Выходные данные
NO
Входные данные
1 1 3 3 2 2 4 4
Выходные данные
YES
Входные данные
1 1 4 4 2 2 3 3
Выходные данные
YES
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Однажды, разбирая старые книги на чердаке, школьник Вася нашёл англо-латинский словарь. Английский он к тому времени знал в совершенстве, и его мечтой было изучить латынь. Поэтому попавшийся словарь был как раз кстати.

К сожалению, для полноценного изучения языка недостаточно только одного словаря: кроме англо-латинского необходим латинско-английский. За неимением лучшего он решил сделать второй словарь из первого.

Как известно, словарь состоит из переводимых слов, к каждому из которых приводится несколько слов-переводов. Для каждого латинского слова, встречающегося где-либо в словаре, Вася предлагает найти все его переводы (то есть все ангийские слова, для которых наше латинское встречалось в его списке переводов), и считать их и только их переводами этого латинского слова.

Помогите Васе выполнить работу по созданию латинско-английского словаря из англо-латинского.

Входные данные

В первой строке содержится единственное целое число N (1 ≤ N ≤ 100) — количество английских слов в словаре. Далее следует N описаний. В первой строке каждого описания содержится английское слово. В следующей строке записано единственное число K ≥ 1 — количество переводов. В следующих K строках приведены переводы текущего английского слова на латинский, по одному в каждой строке.

Все слова состоят только из маленьких латинских букв. Общее количество слов на входе не превышает 100. Длина каждого слова не превосходит 15 символов.

Выходные данные

Выведите соответствующий данному латинско-английский словарь в следующем формате. В первую строку запишите единственное целое число N — количество латинских слов в словаре. Далее выведите N описаний, каждое описание в отдельной строке: сначала латинское слово, затем отделённый пробелами дефис (символ номер 45), затем разделённые запятыми с пробелами переводы этого латинского слова на английский.

При этом порядок английских слов внутри перевода одного латинского может быть каким угодно. Кроме того, порядок следования латинских слов для перевода в словаре также не важен.

Примеры
Входные данные
3
apple
3
malum
pomum
popula
fruit
3
baca
bacca
popum
punishment
2
malum
multa
Выходные данные
7
baca - fruit
bacca - fruit
malum - apple, punishment
multa - punishment
pomum - apple
popula - apple
popum - fruit

Страница: << 16 17 18 19 20 21 22 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест