---> 20 задач <---
    1999(7 задач)
    2000(8 задач)
    2001(8 задач)
    2002(9 задач)
    2003(9 задач)
    2004(10 задач)
    2005(10 задач)
    2006(10 задач)
    2007(11 задач)
    2008(10 задач)
    2009(11 задач)
    2010(11 задач)
    2011(11 задач)
    2012(11 задач)
    2013(11 задач)
    2014(11 задач)
    2015(11 задач)
    2016(11 задач)
Страница: << 1 2 3 4 Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В компании QQQ работает n человек. Очередной проект компании состоит из m независимых частей. Управляющий компании оценил время, которое требуется для выполнения каждой из частей проекта (предполагается, что это время не зависит от того, кто будет выполнять эту часть). После чего он некоторым образом распределил все m частей между n работниками. В результате оказалось, что некоторым из работников потребуется потратить на выполнение своей работы больше времени, чем другим (поскольку им досталась более объемная работа).

Поэтому управляющий решил улучшить распределение работ следующим образом: выбрать двух различных работников и выбрать одну из частей проекта, назначенную первому работнику, и одну из частей, назначенную второму. После этого часть проекта, назначенную первому работнику, назначить второму, а часть, назначенную второму, назначить первому. Если в результате этой операции максимум из времен выполнения работы первым и вторым работниками уменьшился, то такую операцию назовем оптимизирующей.

Например, пусть проект состоит из пяти частей со временами выполнения 3,6,4,8,2, и в компании есть три работника. Пусть распределение работ выглядит следующим образом: первый работник части 1 и 2 (суммарное время 3 + 6 = 9), второй работник часть 4 (суммарное время 8) и третий работник части 3 и 5 (суммарное время 4 + 2 = 6). Тогда если первое задание (назначенное первому работнику) назначить третьему, а пятое задание (назначенное третьему) назначить первому, то у первого работника суммарное время станет равно 6 + 2 = 8, а у третьего 3 + 4 = 7. Поскольку max(9,6) > max(8,7), то эта операция будет оптимизирующей.

Вам дано число работников в компании, число частей в проекте, время, необходимое на выполнение каждой из частей проекта и распределение частей по работникам. Требуется посчитать число различных возможных оптимизирующих операций в данном распределении работ.

Входные данные

Первая строка входного файла содержит два натуральных числа n и m (1 ≤ n,m ≤ 105) число работников в компании и число частей в проекте соответственно. Вторая строка содержит m натуральных чисел i-ое число равно времени выполнения i-ой части проекта (части проекта нумеруются, начиная с 1). Времена выполнения частей не превосходят 109. Далее идут n строк, описывающих распределение частей по работникам. Каждая строка содержит описание частей проекта, которые получил соответствующий работник. Описание состоит из числа частей, которые достались работнику, и их номеров.

Выходные данные

В выходной файл выведите искомое число оптимизирующих операций.

Примеры
Входные данные
3 5
3 6 4 8 2
2 1 2
1 4
2 3 5
Выходные данные
2
Входные данные
5 13
1 2 7 5 8 7 5 4 1 5 1 5 7
3 1 2 3
2 4 5
2 6 7
3 8 9 10
3 11 12 13
Выходные данные
5
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В цирке планируется грандиозное театрализованное шоу с участием львов и тигров. Чтобы уменьшить агрессию хищников, дрессировщики хотят составить программу таким образом, чтобы львы и тигры никогда не встречались на сцене.

Шоу состоит из \(n\) небольших представлений, в каждом из которых могут участвовать или львы, или тигры (также может случиться, что в представлении не участвуют ни те, ни другие). Представление \(i\) начинается через \(s_i\) минут от начала шоу и продолжается \(t_i\) минут. При этом в некоторые моменты времени на сцене могут идти одновременно несколько представлений (в этом случае в них не могут участвовать разные виды хищников).

Публика любит и представления со львами, и представления с тиграми. Дрессировщики просят вас помочь им распределить представления между львами и тиграми так, чтобы минимум из числа представлений с львами и числа представлений с тиграми был как можно больше.

Входные данные

Первая строка входного файла содержит число \(n\) (\(1 \le n \le 200\)). Следующие \(n\) строк содержат пары чисел \(s_i\), \(t_i\). (\(0 \le s_i \le 10^9\), \(1 \le t_i \le 10^9\))

Выходные данные

Выведите в выходной файл \(n\) чисел. Число номер \(i\) должно быть равно \(1\), если в \(i\)-ом представлении участвуют львы, или \(2\), если участвуют тигры, или \(0\), если не участвуют ни те ни другие.

Примеры
Входные данные
5
8 3
0 7
4 5
1 2
11 3

0 7
1 3
4 9
8 11
11 14
Выходные данные
2 1 0 1 2
ограничение по времени на тест
3.0 second;
ограничение по памяти на тест
256 megabytes

Однажды Петя узнал очень важную последовательность из \(n\) чисел. Тщательно проанализировав ее, он обнаружил, что она является арифметической прогрессией. Чтобы не забыть он записал ее элементы на \(n\) карточках.

Но затем случилась неприятность. Не зная всю важность этой последовательности, его брат Вовочка взял еще \(n\) карточек и написал на них произвольные числа, а потом перемешал все \(2n\) карточек.

Теперь Петя хочет восстановить исходную последовательность по этим карточкам. К сожалению возможно, что это можно сделать несколькими способами, но Петю устроят любые \(n\) чисел, образующие арифметическую прогрессию.

Петя не может сделать это вручную, поэтому обратился к вам за помощью.

Напомним что последовательность \(a_1, a_2, \ldots, a_n\) называется арифметической прогрессией, если \(a_i = a_{i-1} + d\) для всех \(i\) от 2 до \(n\) и некоторого \(d\). Число \(d\) называется разностью арифметической прогрессии.

Входные данные

В первой строке входного файла находится целое число \(n\) (\(1 \le n \le 100\,000\)). В следующей строке находится \(2n\) целых чисел по модулю не превосходящих \(10^9\) — числа, написанные на карточках, перечисленные в произвольном порядке. Гарантируется, что можно выбрать \(n\) из них так, чтобы они образовывали арифметическую прогрессию.

Выходные данные

В первой строке выходного файла выведите \(a_1\) и \(d\) — первый элемент и разность найденной арифметической прогрессии. Если \(d = 0\), число \(a_1\) должно встречаться среди заданных чисел \(n\) раз.

Если существует несколько решений, выведите любое.

ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Директор школы «Лицей Программистов» города Линейска сумел привить ученикам этой школы хорошую дисциплину, но, несмотря на это, многие ученики продолжают опаздывать на уроки.

В Линейске есть всего одна главная улица, на которой расположен и сам лицей, и живут все его ученики. Дисциплинированные школьники выходят из своих домов в одно и то же время. Но, к сожалению, все они живут на разном расстоянии от школы и добираются с разной, но постоянной скоростью (среди учеников есть как весьма неторопливые, так и будущая чемпионка мира по бегу на 100 метров Маша Гайка).

Для улучшения ситуации с опозданиями школа купила один веломобиль, который взялся водить сторож школы. Веломобиль способен помимо водителя перевозить одного школьника. Веломобиль перемещается с постоянной скоростью \(v\).

Ночь веломобиль проводит в школьном гараже, а утром, ровно в тот момент, когда все ученики выходят из своих домов, отправляется им навстречу, чтобы подвезти какого-нибудь школьника. Конечно же, ему приходится подвозить школьника прямо до ворот школы, потому как никто не хочет быть высаженным посреди пути. После того, как веломобиль помог одному ученику быстрее добраться в учебное заведение, он снова может ехать навстречу следующему опаздывающему человеку.

Директор хочет начинать занятия как можно раньше, но для этого нужно, чтобы все ученики добрались до лицея. Он поручил вам помочь составить план, по которому должен действовать водитель веломобиля, чтобы время прибытия последнего школьника в школу было минимальным.

Входные данные

Первая строка входного файла содержит два целых числа \(n, v\) (\(1 \le n \le 10^5\), \(1 \le v \le 1000\)) — соответственно количество людей и скорость веломобиля. Следующие \(n\) строк содержат по два целых числа \(x_i, v_i\) (\(1 \le x_i, v_i \le 1000\)) — расстояния от школы до дома \(i\)-ого ученика и его скорость.

Выходные данные

В первую строку выходного файла выведите вещественное число \(t\) — минимальное время, за которое все школьники доберутся до лицея. Во второй строке выходного файла выведите единственное число \(k\) — количество учеников, которых нужно подвезти. В следующих \(k\) строках выведите по два числа — номер школьника, которого нужно подвезти, и расстояние от школы, на котором этот школьник должен сесть в веломобиль.

Школьников нужно выводить в том же порядке, в котором они будут ехать на веломобиле.

Выводите все вещественные числа как можно точнее. При проверке вашего решения при сравнении вещественных чисел будет допускаться абсолютная или относительная погрешность \(10^{-6}\).

Пример
5 4
1 1
4 2
3 1
7 5
5 1
2.400000000 2
5 4.000000000
3 0.800000000
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

У Коли сегодня день рождения! По этому случаю он решил после олимпиады сходить с друзьями в парк аттракционов. И какая удача — можно купить групповой билет сразу на всех, всего за \(S\) рублей!

Конечно, скидываться придется всем поровну. То есть, если Коля позовет \(k\) своих друзей, то каждому придется заплатить \(S/(k + 1)\) рублей (да, сам Коля тоже должен внести свою долю). При этом \(S\) не обязательно должно делиться на \(k + 1\): главное — купить билет, а между собой друзья уж как-нибудь договорятся.

Всего у Коли \(n\) друзей, при этом \(i\)-й из них готов пойти с Колей в парк, если доля, которую ему придется заплатить не больше \(b_i\) (больше денег у него просто с собой нет) и не меньше \(a_i\) (иначе он решит, что Колин день рождения — это скучно, и пойдет играть в волейбол с Сережей).

Так что может так получиться, что всех позвать не удастся. Ну и ладно. Для каждого своего друга Коля знает число \(f_i\) — количество веселья, который тот произведет, если его позвать.

Помогите Коле выбрать подмножество друзей, которых Коля должен позвать с собой, чтобы максимизировать суммарное веселье.

Входные данные

В первой строке входного файлы содержится два целых числа: \(n\) и \(S\) (\(1 \le n \le 100\,000\), \(0 \le S \le 10^9\)) — количество друзей Коли и стоимость билета. В следующих \(n\) строках содержится по три целых числа: в \(i\)-й из этих строк находятся числа \(a_i\), \(b_i\) и \(f_i\) (\(0 \le a_i \le b_i \le S\), \(0 \le f_i \le 10^9\)). Они означают, что \(i\)-го друга можно позвать на вечеринку, если доля, которую ему придется заплатить, лежит между \(a_i\) и \(b_i\), и он произведет \(f_i\) веселья.

Выходные данные

В первой строке выходного файла выведите два числа: \(k\) (количество приглашенных на вечеринку друзей) и \(F\) (максимальное суммарное веселье, которое можно получить). Во второй строке выведите \(k\) чисел — номера друзей, которых нужно пригласить.


Страница: << 1 2 3 4 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест