Системы счисления(36 задач)
"Длинная" арифметика(58 задач)
Простые числа и разложение на множители(45 задач)
Остатки(21 задач)
Быстрое возведение в степень(3 задач)
Быстрое преобразование Фурье(3 задач)
Ваня и Петя играют в следующую игру. Ваня пишет на бумаге какую-либо перестановку чисел от 1 до \(N\) (то есть выписывает все числа от 1 до \(N\) в некотором порядке) и расставляет на столе в ряд \(N\) предметов. После этого Петя переставляет предметы в соответствии с Ваниной перестановкой. А именно, Петя выполняет следующие действия: если i-ое число в Ваниной перестановке равно \(a_i\), то Петя ставит предмет, который стоит на i-ом месте, на место с номером \(a_i\).
Обозначим предметы числами от 1 до \(N\). Тогда начальное расположение предметов можно обозначить последовательностью чисел (1, 2, ..., \(N\)). К примеру, если \(N\) = 5, то начальное расположение предметов есть (1, 2, 3, 4, 5). Пусть Ваня написал перестановку <2, 5, 4, 3, 1>. Это значит, что после перемещения предметов они окажутся расставлены в следующем порядке: (5, 1, 4, 3, 2).
Однако, переставив предметы, Петя не останавливается на достигнутом и вновь переставляет их в соответствии с Ваниной перестановкой. Снова, если i-ое число в Ваниной перестановке равно \(a_i\), то Петя ставит предмет, который стоит на i-ом месте на место с номером \(a_i\). Так, если в приведенном выше примере повторно применить перестановку, предметы окажутся расположены в следующем порядке: (2, 5, 3, 4, 1).
Таким образом, Петя переставляет предметы в соответствии с Ваниной перестановкой, пока их расположение не окажется таким же, как исходное. В нашем примере Пете потребуется сделать еще 4 действия, порядок предметов после каждого из них будет следующим: (1, 2, 4, 3, 5), (5, 1, 3, 4, 2), (2, 5, 4, 3, 1), (1, 2, 3, 4, 5). Всего Пете потребовалось применить перестановку 6 раз.
Добрый Ваня хочет, чтобы Пете пришлось выполнить как можно больше действий. Помогите ему выбрать соответствующую перестановку.
Вводится единственное целое число \(N\) - количество предметов (1 <= \(N\) <= 100).
Выведите перестановку чисел от 1 до \(N\) такую, что количество действий, которое придется сделать Пете, максимально. Если таких перестановок несколько, можно вывести любую.
5
2 1 4 5 3
Фирма Macrohard разработала новый протокол обмена данными по сети. Каждый блок данных при этом обмене состоит из \(N\) чисел в диапазоне от 0 до \(M\)-1 включительно. Чтобы повысить надежность передачи, вместе с блоком данных пересылается контрольный блок такой же длины.
Предположим, что исходный блок состоит из чисел \(a_1\), \(a_2\),…,\(a_N\). Тогда, контрольный блок состоит из чисел \(b_1\), \(b_2\),…,\(b_N\), из диапазона от 0 до \(M\)-1 включительно таких, что выполняются следующие равенства: \(b_1\) = (\(a_N\) + \(b_N\)) mod \(M\), \(b_2\) = (\(a_1\) + \(b_1\)) mod \(M\), ... , \(b_N\) = (\(a_N\)-1 + \(b_N\)-1) mod \(M\) (обозначение \(X\) mod \(M\) обозначает остаток от деления \(X\) на \(M\), например, 7 mod 4 = 3, 6 mod 2 = 0).
Блоки данных, для которых нельзя построить контрольный блок, удовлетворяющий указанному свойству, считаются подозрительными и их передача по сети не разрешается.
Ваня хочет поступить на работу программистом в фирму Macrohard, и в качестве вступительного задания ему поручили написать процедуру построения контрольного блока для заданного блока данных. Помогите ему!
В первой строке вводятся числа \(N\) и \(M\) (1 <= \(N\) <= 1000, 2 <= \(M\) <= \(10^9\)). Следующая строка содержит блок данных, для которого следует построить контрольный блок, числа разделены пробелами.
В первой строке выведите YES, если для данного блока данных можно построить контрольный блок, и NO, если нельзя. В случае, если контрольный блок построить можно, во второй строке выведите контрольный блок. Числа разделяйте пробелами. Если решений несколько, можно выдать любое из них.
4 2 0 0 0 0
YES 0 0 0 0
4 2 0 1 0 0
NO
В 3141 году очередная экспедиция на Марс обнаружила в одной из пещер таинственные знаки. Они однозначно доказывали существование на Марсе разумных существ. Однако смысл этих таинственных знаков долгое время оставался неизвестным. Недавно один из ученых, профессор Очень-Умный, заметил один интересный факт: всего в надписях, составленных из этих знаков, встречается ровно \(K\) различных символов. Более того, все надписи заканчиваются на длинную последовательность одних и тех же символов.
Вывод, который сделал из своих наблюдений профессор, потряс всех ученых Земли. Он предположил, что эти надписи являются записями факториалов различных натуральных чисел в системе счисления с основанием \(K\). А символы в конце - это конечно же нули - ведь, как известно, факториалы больших чисел заканчиваются большим количеством нулей. Например, в нашей десятичной системе счисления факториалы заканчиваются на нули, начиная с 5!=1·2·3·4·5 . А у числа 100! в конце следует 24 нуля в десятичной системе счисления и 48 нулей в системе счисления с основанием 6 - так что у предположения профессора есть разумные основания!
Теперь ученым срочно нужна программа, которая по заданным числам \(N\) и \(K\) найдет количество нулей в конце записи в системе счисления с основанием \(K\) числа \(N\)!=1·2·3·...·(\(N\)-1)·\(N\), чтобы они могли проверить свою гипотезу. Вам придется написать им такую программу!
В первой строке входных данных содержатся числа \(N\) и \(K\), разделенные пробелом, (1 <= \(N\) <= \(10^9\), 2 <= \(K\) <= 1000).
Выведите число \(X\) - количество нулей в конце записи числа \(N\)! в системе счисления с основанием \(K\).
5 10
1
1 2
0
100 10
24
1000 10
249
Рассмотрим таблицу, состоящую из \(N\) строк и \(M\) столбцов. Если в каждой ячейке такой таблицы стоит целое число, назовем такую таблицу целочисленной матрицей. Скажем, что эта матрица кратна чиcлу \(p\), если все числа в ее ячейках кратны \(p\).
Рассмотрим теперь суммы элементов матрицы по строкам и столбцам соответственно. Обозначим сумму чисел \(i\)-й строки за \(H_i\), а сумму чисел \(j\)-го столбца за \(V_j\). Упорядоченный набор чисел (\(H_1\), \(H_2\), …, \(H_N\), \(V_1\), \(V_2\), …, \(V_M\)) назовем профилем матрицы. Скажем, что матрица почти кратна \(p\), если все числа, входящие в ее профиль, кратны \(p\). Почти кратная 5 матрица и ее профиль изображены на рисунке 1.
В первой строке входных данных задаются целые числа \(p\) (1 <= \(p\) <= 10), \(N\) и \(M\) (1 <= \(N\), \(M\) <= 30). Следующие \(N\) строк содержат по \(M\) целых неотрицательных чисел, не превышающих 1000, которые являются элементами исходной матрицы \(A\).
Выведите матрицу \(B\) по строкам - сначала \(M\) элементов первой строки, затем \(M\) элементов второй, и т. д. Разделяйте числа пробелами и/или переводами строк. Заботиться о красивом форматировании таблицы не надо. Если искомой матрицы не существует, выведите единственное число - "-1". Если решений несколько, выведите любое из них.
3 3 3 1 2 3 2 3 1 3 1 2
3 0 3 0 3 3 3 3 0
Роман коллекционирует числа, кажущиеся ему интересными. Например, сейчас он считает интересным положительные числа, запись которых в системе счисления с основанием k заканчивается нечетным числом нулей. Например, при k = 2 такими числами являются 210 = 102, 2410 = 110002.
Для того, чтобы пополнить свою коллекцию, Роман хочет найти n-ое в порядке возрастания такое число. Поскольку n он взял достаточно большим, то вручную у него это сделать не получается. Помогите Роману — напишите программу, которая найдет число, которое нужно ему для пополнения коллекции.
Первая строка входного файла содержит два целых числа (1 ≤ n ≤ 1015, 2 ≤ k ≤ 10).
В выходной файл выведите n-ое в порядке возрастания число, запись которого в системе счисления с основанием k заканчивается на нечетное число нулей. Это число необходимо вывести в десятичной системе счисления.
1 2
2
10 10
110