Бинарный поиск(101 задач)
Порядковые статистики(3 задач)
Поиск подстроки в строке(1 задач)
Тернарный поиск(8 задач)
"Два указателя"(18 задач)
Одна Очень Престижная Олимпиада, как и все престижные олимпиады в последнее время, состоит из двух туров - регионального и заключительного. Правила отбора во второй тур (заключительный этап) просты:
Известно, что никакие два участника не набрали одинаковое количество баллов. По информации о результатах первого тура помогите жюри установить минимально возможный проходной балл, при котором все правила отбора будут выполнены.
В первой строке входного файла содержатся три целых числа \(N\), \(M\) и \(R\) - число участников первого тура, максимально возможное число участников второго тура и число регионов, из которых могли быть участники (\(1 \le M < N\)). Далее в \(N\) строках содержатся результаты каждого из участников. Каждая строка состоит из четырех целых чисел. Сначала идет \(id\) - уникальный идентификатор участника (\(1 \le id \le N\)), далее номер региона \(region\), в котором данный участник учится (\(1 \le region \le R\)), затем \(score\) - число баллов, набранных участником, четвертое число равно 1, если участник является призером олимпиады прошлого года, и 0 - в противном случае.
Гарантируется, что все идентификаторы участников различны, никакие два участника не набрали одинаковое число баллов, и выполнить все правила отбора возможно.
Выведите одно число - минимальный проходной балл, который можно установить.
Тесты состоят из четырёх групп. Во всех тестах \(0 \le score \le 10^9\).
9 6 5 6 1 799 0 2 4 995 0 1 4 989 1 7 2 538 0 5 4 984 0 8 2 1000 0 3 2 998 0 4 2 823 1 9 1 543 0
985
В одной Очень Известной Летней Школе наиболее популярным видом спорта является волейбол. Для каждого из \(N\) школьников известно его умение играть в волейбол. Перед началом занятий школьников необходимо распределить между двумя тренерами.
Тренеры сочли справедливым следующий алгоритм разделения на две группы. Сначала они выбирают два целых числа \(p\), \(q\) (\(0 < p \le q \le N\)). Затем первый берет себе \(p\) лучших школьников, после чего оба тренера, начиная со второго, берут по очереди по \(q\) лучших школьников из оставшихся, пока их количество не меньше \(q\). В конце очередной тренер просто берет всех оставшихся.
Оба тренера заинтересованы в наиболее справедливом распределении школьников между группами. Поэтому они стремятся найти такие \(p\) и \(q\), чтобы разница суммарных умений между двумя группами школьников оказалась минимальной. При этом, вообще говоря, не обязательно, чтобы количество школьников в каждой из групп было одинаковым.
Помогите тренерам подобрать такие "справедливые" значения \(p\) и \(q\) (\(0 < p \le q \le N\)), при которых разница в суммарных умениях образованных групп школьников по абсолютной величине будет минимальна.
В первой строке входного файла записано единственное целое число \(N\). Во второй строке содержатся \(N\) неотрицательных целых чисел, не превосходящих \(10^9\) - умения школьников играть в волейбол.
Выведите искомые целые значения \(p\) и \(q\) (\(0 < p \le q \le N\)). Если искомых пар несколько, то выведите любую из них.
Тесты состоят из четырёх групп.
8 5 3 3 3 3 3 7 1
1 2
На плоскости задан прямоугольник размером \(W\times H\), и \(N\) отмеченных точек внутри него. Требуется найти квадрат максимального размера:
со сторонами, параллельными сторонам прямоугольника;
не содержащий отмеченных точек строго внутри себя (но, возможно, содержащий отмеченные точки на границе);
лежащий внутри прямоугольника.
Первая строка входного файла содержит числа \(N\) — количество отмеченных точек, \(W\) — ширину прямоугольника и \(H\) — высоту прямоугольника (\(1 \leq N \leq 3 * 10^4\), \(0 \leq W, H \leq 10^6\)). Следующие \(N\) строк содержат координаты отмеченных точек \(X_i\), \(Y_i\) (целые числа, \(0 \leq X_i \leq W\), \(0 \leq Y_i \leq H\)). Система координат введена так, что вершины прямоугольника имеют координаты \((0, 0)\), \((W, 0)\), \((0, H)\), \((W, H)\).
Выведите в выходной файл одно число — длину стороны максимального искомого квадрата.
7 10 7 3 2 4 2 7 0 7 3 4 5 2 4 1 7
4
1 10 10 5 5
5
Высокое здание, состоящее из \(N\) этажей, оснащено только одним лифтом. Парковка находится ниже фундамента здания, что соответствует одному этажу ниже первого. Этажи пронумерованы от \(1\) до \(N\) снизу вверх. Про каждый этаж известно количество человек, желающих спуститься на лифте на парковку. Пусть для i-го этажа эта величина равна \(A_i\). Известно, что лифт не может перевозить более \(C\) человек единовременно, а также то, что на преодоление расстояния в один этаж (не важно вверх или вниз) ему требуется \(P\) секунд. Какое наибольшее количество человек лифт может перевезти на парковку за \(T\) секунд, если изначально он находится на уровне парковки?
В первой строке входного файла содержатся целые числа \(N\), \(C\), \(P\), \(T\) (\(1 \leq N \leq 100\), \(1 \leq C \leq 10^9\), \(1 \leq P \leq 10^9\), \(1 \leq T \leq 10^9\)). Вторая строка содержит последовательность \(N\) целых чисел \(A_1\), \(A_2\), ..., \(A_N\) (\(0 \leq A_i \leq 10^9\)). Сумма всех значений последовательности не превосходит \(10^9\).
Выведите наибольшее количество человек, которое лифт успеет перевезти на парковку.
4 5 2 15 0 1 2 3
3
4 5 2 18 0 1 2 3
5
3 2 1 9 1 1 1
3
В селе Максоярославке коровы обычно пасутся на лужайках, соединенных дорожками, на каждой лужайке пасется хотя бы одна корова. При этом для каждой пары лужаек есть ровно один способ пройти от одной лужайки до другой. По каждой дорожке можно двигаться в обоих направлениях. Считается, что все дорожки имеют одинаковую длину.
Главный фермер села хочет построить на лужайках \(k\) коровников для своих коров. Ясно, что каждая корова вечером будет возвращаться именно в тот
коровник, который ближе к ее лужайке (если расстояние до коровников
одинаково, то в любой из них). Поэтому возникает задача определения
такого расположения коровников, при котором наибольшее из расстояний,
проходимых коровами, было бы минимально.
В первой строке входного файла содержатся два числа \(n\) и \(k\) (\(2 \le n \le 50\;000\), \(1 \le k \le n\)) --- количество лужаек и планируемое число коровников, соответственно. Следующие \(n - 1\) строк содержат описания дорожек. Каждая дорожка задается парой целых положительных чисел (\(a, \, b\)), где \(a\) и \(b\) --- номера лужаек, которые соединяет данная дорожка. Лужайки нумеруются с единицы.
В первой строке входного файла выведите \(l\) --- максимальное количество дорожек, по которым придется пройти корове, чтобы попасть в коровник. Во второй строке выведите \(k\) различных целых чисел --- номера лужаек, на которых следует построить коровники. Если оптимальных решений несколько, разрешается вывести любое из них.
7 2 5 4 4 3 1 3 2 3 4 6 6 7
2 1 4