---> 24 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 1 2 3 4 5 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Требуется упорядочить числа от 1 до N. Разрешается менять только соседние числа и нельзя переставлять число, которое уже стоит на своем месте.

Фирма Macrohard получила заказ от армии одной страны на реализацию комплекса программного обеспечения для нового суперсекретного радара. Одной из наиболее важных подпрограмм в разрабатываемом комплексе является процедура сортировки.

Однако в отличие от обычной сортировки, эта процедура должна сортировать не произвольный массив чисел, который передается ей на вход, а специальный заранее заданный массив из \(N\) чисел, в котором записана некоторая фиксированная перестановка чисел от 1 до \(N\), и кроме того, ни одно число в нем изначально не находится на своем месте (то есть на позиции с номером i изначально не находится число \(i\)).

В связи с повышенными требованиями к надежности комплекса в процессе сортировки разрешается выполнять единственную операцию - менять местами два соседних элемента массива. Кроме того, в связи с необходимостью соответствия уставу, не разрешается изменять положение числа, которое уже находится на своем месте.

Например, если массив из 6 элементов в некоторый момент имеет вид <2, 1, 3, 6, 4, 5>, то можно поменять местами 1 и 2, 6 и 4 или 4 и 5, а менять местами 1 и 3 или 3 и 6 нельзя, поскольку число 3 находится на своем месте (на позиции с номером 3).

Вам дан входной массив и поставлено важное задание. Найти последовательность обменов (не обязательно кратчайшую), сортирующую массив и удовлетворяющую приведенным условиям.

Подсказка

Найти такую последовательность обменов всегда возможно.

Входные данные

В первой строке вводится целое число \(N\) - размер входного массива (1 <= \(N\) <= 100). Вторая строка содержит \(N\) целых чисел - исходную перестановку чисел от 1 до \(N\) в массиве. Изначально ни одно число не стоит на своем месте.

Выходные данные

Выведите \(K\) строк, где \(K\) - количество обменов в Вашей сортировке. На каждой строке выведите по два числа \(x_i\) и \(y_i\), разделенных пробелом - позиции в массиве, числа на которых следует поменять местами на i-ом обмене. Помните, что должно выполняться условие |\(x_i\) - \(y_i\)| = 1 и что нельзя перемещать число, которое уже стоит на своем месте.

Пояснение к примеру

В приведенном примере массив последовательно имеет следующий вид:
исходный вид массива
2 3 1 6 4 5
поменяли местами числа на 2 и 3 позициях
2 1 3 6 4 5
поменяли местами числа на 1 и 2 позициях
1 2 3 6 4 5
поменяли местами числа на 4 и 5 позициях
1 2 3 4 6 5
поменяли местами числа на 5 и 6 позициях
1 2 3 4 5 6

Примеры
Входные данные
6
2 3 1 6 4 5
Выходные данные
2 3
1 2
4 5
5 6
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Дано натуральное четырехзначное число. Найдите минимальное натуральное четырехзначное число, состоящее из тех же цифр, что и заданное. Заметим, что четырехзначные числа не могут начинаться с нуля.

Входные данные

Вводится натуральное четырехзначное число.

Выходные данные

Выведите минимальное натуральное  четырехзначное число, состоящее из тех же цифр.

Примеры
Входные данные
1513
Выходные данные
1135
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Дано прямоугольное поле, каждая клетка которого покрашена в какой-то цвет. За один ход необходимо перекрасить все клетки одного цвета в другой цвет. Стоимость перекраски одной клетки зависит от номера хода и задается функцией: \(F(i) = ((A \cdot F(i-1)+B) \bmod~C) + 1\), \(F_1\) – известная стоимость первого хода.

Необходимо за минимальное количество ходов перекрасить все поле в один цвет так, чтобы общая стоимость перекраски была бы максимальной.

Входные данные

В первой строке натуральные задаются числа \(F_1\), \(A\), \(B\) и \(C\) (\(1 \leq F_1, A, B, C \leq 10000\)) – параметры функции \(F\). Во второй строке задаются два натуральных числа \(M\) и \(N\) (\(1 \leq N, M \leq 50\)) – размеры поля. В последующих \(M\) строках записано по \(N\) натуральных чисел, не превосходящих \(2^{31}\) – цвета клеток.

Выходные данные

В первую строку выведите минимальное число ходов. Во вторую строку выведите в каком порядке будут перекрашиваться цвета, встречающиеся в таблице.

Примеры
Входные данные
1 3 1 5
4 4
1 2 3 6
2 1 1 2
3 1 1 3
2 2 2 2
Выходные данные
4
6 2 3 1 
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В супермаркете проводится беспрецедентная акция – «Покупая два любых товара, третий получаешь бесплатно*», а внизу мелким шрифтом приписано «* - из трех выбранных вами товаров оплачиваются два наиболее дорогих».

Вася, идя в супермаркет, определился, какие товары он хочет купить, и узнал, сколько они стоят. Помогите ему определить минимальную сумму денег, которую ему нужно взять с собой, чтобы в итоге стать счастливым обладателем этих товаров.

Входные данные

Во входном файле задано сначала число N (1≤N≤1000), а затем N чисел – стоимости выбранных Васей товаров. Все стоимости – натуральные числа, не превышающие 10000.

Выходные данные

В выходной файл выведите одно число – сумму денег, которую Вася должен взять с собой в супермаркет (минимально возможную).

Комментарии к примерам тестов

1. Вася сначала пройдет через кассу с товарами стоимостью 1, 3 и 4 – заплатит 7 рублей и товар стоимостью 1 получит в подарок, а затем снова зайдет в супермаркет и купит товары стоимостью 5 и 7, еще один товар стоимостью 5 получив в подарок.

2. Вася в первый заход в супермаркет купит товары стоимостью 15 и 25 рублей, в качестве подарка взяв товар стоимостью 8 рублей. А во второй заход в супермаркет купит товары стоимостью 3 и 8, не взяв никакого подарка.

Примеры
Входные данные
6
1 5 4 3 5 7
Выходные данные
19
Входные данные
5
3 15 25 8 8
Выходные данные
51
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В новом учебном году на занятия в компьютерные классы Дворца Творчества Юных пришли учащиеся, которые были разбиты на N групп. В i-й группе оказалось Xi человек. Тут же перед директором встала серьезная проблема: как распределить группы по аудиториям. Во дворце имеется M N аудиторий, в j-й аудитории имеется Yj компьютеров. Для занятий необходимо, чтобы у каждого учащегося был компьютер и еще один компьютер был у преподавателя. Переносить компьютеры из одной аудитории в другую запрещается. Помогите директору!

Напишите программу, которая найдет, какое максимальное количество групп удастся одновременно распределить по аудиториям, чтобы всем учащимся в каждой группе хватило компьютеров, и при этом остался бы еще хотя бы один для учителя.

Входные данные

На первой строке входного файла расположены числа N и M (1 N M 1000). На второй строке расположено N чисел — X1 , …, XN(1 Xi 1000 для всех 1 i N). На третьей строке расположено M чисел   Y1, ..., YM (1 ≤ Yi 1000 для всех 1 i ≤ M).

Выходные данные

Выведите на первой строке число P - количество групп, которые удастся распределить по аудиториям. На второй строке выведите распределение групп по аудиториям – N чисел, i-е число должно соответствовать номеру аудитории, в которой должна заниматься i-я группа. (Нумерация как групп, так и аудиторий, начинается с 1). Если i-я группа осталась без аудитории, i-е число должно быть равно 0. Если допустимых распределений несколько, выведите любое из них.

Примеры
Входные данные
3 3
1 2 3
3 4 2
Выходные данные
3
3 1 2 

Страница: << 1 2 3 4 5 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест