Сортировка выбором (максимума)(5 задач)
Сортировка вставками(4 задач)
Фирма Macrohard получила заказ от армии одной страны на реализацию комплекса программного обеспечения для нового суперсекретного радара. Одной из наиболее важных подпрограмм в разрабатываемом комплексе является процедура сортировки.
Однако в отличие от обычной сортировки, эта процедура должна сортировать не произвольный массив чисел, который передается ей на вход, а специальный заранее заданный массив из \(N\) чисел, в котором записана некоторая фиксированная перестановка чисел от 1 до \(N\), и кроме того, ни одно число в нем изначально не находится на своем месте (то есть на позиции с номером i изначально не находится число \(i\)).
В связи с повышенными требованиями к надежности комплекса в процессе сортировки разрешается выполнять единственную операцию - менять местами два соседних элемента массива. Кроме того, в связи с необходимостью соответствия уставу, не разрешается изменять положение числа, которое уже находится на своем месте.
Например, если массив из 6 элементов в некоторый момент имеет вид <2, 1, 3, 6, 4, 5>, то можно поменять местами 1 и 2, 6 и 4 или 4 и 5, а менять местами 1 и 3 или 3 и 6 нельзя, поскольку число 3 находится на своем месте (на позиции с номером 3).
Вам дан входной массив и поставлено важное задание. Найти последовательность обменов (не обязательно кратчайшую), сортирующую массив и удовлетворяющую приведенным условиям.
Подсказка
Найти такую последовательность обменов всегда возможно.
В первой строке вводится целое число \(N\) - размер входного массива (1 <= \(N\) <= 100). Вторая строка содержит \(N\) целых чисел - исходную перестановку чисел от 1 до \(N\) в массиве. Изначально ни одно число не стоит на своем месте.
Выведите \(K\) строк, где \(K\) - количество обменов в Вашей сортировке. На каждой строке выведите по два числа \(x_i\) и \(y_i\), разделенных пробелом - позиции в массиве, числа на которых следует поменять местами на i-ом обмене. Помните, что должно выполняться условие |\(x_i\) - \(y_i\)| = 1 и что нельзя перемещать число, которое уже стоит на своем месте.
В приведенном примере массив последовательно имеет следующий вид:
исходный вид массива
2 3 1 6 4 5
поменяли местами числа на 2 и 3 позициях
2 1 3 6 4 5
поменяли местами числа на 1 и 2 позициях
1 2 3 6 4 5
поменяли местами числа на 4 и 5 позициях
1 2 3 4 6 5
поменяли местами числа на 5 и 6 позициях
1 2 3 4 5 6
6 2 3 1 6 4 5
2 3 1 2 4 5 5 6
Дано натуральное четырехзначное число. Найдите минимальное натуральное четырехзначное число, состоящее из тех же цифр, что и заданное. Заметим, что четырехзначные числа не могут начинаться с нуля.
Вводится натуральное четырехзначное число.
Выведите минимальное натуральное четырехзначное число, состоящее из тех же цифр.
1513
1135
Дано прямоугольное поле, каждая клетка которого покрашена в какой-то цвет. За один ход необходимо перекрасить все клетки одного цвета в другой цвет. Стоимость перекраски одной клетки зависит от номера хода и задается функцией: \(F(i) = ((A \cdot F(i-1)+B) \bmod~C) + 1\), \(F_1\) – известная стоимость первого хода.
Необходимо за минимальное количество ходов перекрасить все поле в один цвет так, чтобы общая стоимость перекраски была бы максимальной.
В первой строке натуральные задаются числа \(F_1\), \(A\), \(B\) и \(C\) (\(1 \leq F_1, A, B, C \leq 10000\)) – параметры функции \(F\). Во второй строке задаются два натуральных числа \(M\) и \(N\) (\(1 \leq N, M \leq 50\)) – размеры поля. В последующих \(M\) строках записано по \(N\) натуральных чисел, не превосходящих \(2^{31}\) – цвета клеток.
В первую строку выведите минимальное число ходов. Во вторую строку выведите в каком порядке будут перекрашиваться цвета, встречающиеся в таблице.
1 3 1 5 4 4 1 2 3 6 2 1 1 2 3 1 1 3 2 2 2 2
4 6 2 3 1
В супермаркете проводится беспрецедентная акция – «Покупая два любых товара, третий получаешь бесплатно*», а внизу мелким шрифтом приписано «* - из трех выбранных вами товаров оплачиваются два наиболее дорогих».
Вася, идя в супермаркет, определился, какие товары он хочет купить, и узнал, сколько они стоят. Помогите ему определить минимальную сумму денег, которую ему нужно взять с собой, чтобы в итоге стать счастливым обладателем этих товаров.
Во входном файле задано сначала число N (1≤N≤1000), а затем N чисел – стоимости выбранных Васей товаров. Все стоимости – натуральные числа, не превышающие 10000.
В выходной файл выведите одно число – сумму денег, которую Вася должен взять с собой в супермаркет (минимально возможную).
Комментарии к примерам тестов
1. Вася сначала пройдет через кассу с товарами стоимостью 1, 3 и 4 – заплатит 7 рублей и товар стоимостью 1 получит в подарок, а затем снова зайдет в супермаркет и купит товары стоимостью 5 и 7, еще один товар стоимостью 5 получив в подарок.
2. Вася в первый заход в супермаркет купит товары стоимостью 15 и 25 рублей, в качестве подарка взяв товар стоимостью 8 рублей. А во второй заход в супермаркет купит товары стоимостью 3 и 8, не взяв никакого подарка.
6 1 5 4 3 5 7
19
5 3 15 25 8 8
51
В новом учебном году на занятия в компьютерные классы Дворца Творчества Юных пришли учащиеся, которые были разбиты на N групп. В i-й группе оказалось Xi человек. Тут же перед директором встала серьезная проблема: как распределить группы по аудиториям. Во дворце имеется M ≥ N аудиторий, в j-й аудитории имеется Yj компьютеров. Для занятий необходимо, чтобы у каждого учащегося был компьютер и еще один компьютер был у преподавателя. Переносить компьютеры из одной аудитории в другую запрещается. Помогите директору!
Напишите программу, которая найдет, какое максимальное количество групп удастся одновременно распределить по аудиториям, чтобы всем учащимся в каждой группе хватило компьютеров, и при этом остался бы еще хотя бы один для учителя.
На первой строке входного файла расположены числа N и M (1 ≤ N ≤ M ≤ 1000). На второй строке расположено N чисел — X1 , …, XN(1 ≤ Xi ≤ 1000 для всех 1 ≤ i ≤ N). На третьей строке расположено M чисел Y1, ..., YM (1 ≤ Yi ≤ 1000 для всех 1 ≤ i ≤ M).
Выведите на первой строке число P - количество групп, которые удастся распределить по аудиториям. На второй строке выведите распределение групп по аудиториям – N чисел, i-е число должно соответствовать номеру аудитории, в которой должна заниматься i-я группа. (Нумерация как групп, так и аудиторий, начинается с 1). Если i-я группа осталась без аудитории, i-е число должно быть равно 0. Если допустимых распределений несколько, выведите любое из них.
3 3 1 2 3 3 4 2
3 3 1 2