Двоичное дерево поиска(24 задач)
Дерево отрезков, RSQ, RMQ(90 задач)
Бор(14 задач)
Дерево Фенвика(6 задач)
Декартово дерево(10 задач)
В супермаркете «На троечку» часто происходят распродажи товаров, срок годности которых подходит к концу. Каждый товар привозят в магазин в определенное время, а через некоторое его вывозят из магазина, в связи с окончанием срока годности. Более формально, каждый товар имеет стоимость c i , время его завоза в магазин a i и время его вывоза из магазина b i .
У Иннокентия есть хитрый план похода в магазин. Даже несколько. Каждый план похода в магазин выглядит так: Иннокентий выбирает какое-то время, когда он появится в магазине m j , время s j , которое он проведет в магазине среди огромных стеллажей товаров, и сумму денег k j , которую он рассчитывает потратить. Для каждого плана он хочет узнать, сможет ли он осуществить его, т. е. верно ли, что он сможет во время своего пребывания в магазине купить несколько товаров суммарной стоимостью ровно k j , при этом все выбранные товары должны быть в магазине на протяжении всего пребывания Иннокентия в магазине.
Помогите Иннокентию определить, какие из его планов можно выполнить.
В первой строке входных данных содержится число N — общее количество товаров в магазине ( 1 ≤ N ≤ 500 ). Далее содержатся описания товаров, каждый товар описывается тремя целыми числами c i , a i , b i , обозначающими стоимость товара, время его завоза и время его вывоза из магазина ( 1 ≤ c i ≤ 1 000 , 1 ≤ a i < b i ≤ 10 9 ).
Далее содержится число M — количество планов Иннокентия ( 1 ≤ M ≤ 500 000 ). Каждый план описывается тремя целыми числами m j , k j , s j , обозначающими время прихода Иннокентия в магазин, сумму денег, которую он готов потратить в этом плане и длительность его пребывания в магазине ( 1 ≤ m j ≤ 10 9 , 1 ≤ k j ≤ 100 000 , 0 ≤ s j ≤ 10 9 ).
Помните, что это только планы, т. е. ситуация в магазине не меняется вне зависимости от того, может ли Иннокентий осуществить план или нет.
Для каждого плана в отдельной строке выведите « YES », если Иннокентий может его осуществить, и « NO » в противном случае.
Тесты к этой задаче состоят из четырех групп.
Баллы за каждую группу тестов ставятся только при прохождении всех тестов группы.
5 6 2 7 5 4 9 1 2 4 2 5 8 1 3 9 5 2 7 1 2 7 2 3 2 0 5 7 2 4 1 5
YES NO YES YES NO
Лука - торговец картинами. У него есть N клиентов, каждому из которых он продает произведения искусства. Каждый клиент может купить либо цветные картины, либо черно-белые, но не те и другие вместе. При этом клиент под номером i готов купить не более a i цветных картин и не более b i черно-белых картин. При этом каждый клиент хочет купить хотя бы одну картину.
У Луки практически неограниченный запас картин, поэтому запросы клиентов не являются для него проблемой. Однако, Лука не любит продавать черно-белые картины, и если окажется, что меньше, чем C людей купили цветные картины, он очень огорчится.
В силу нестабильной экономической ситуации в стране клиенты постоянно изменяют свои запросы, иными словами количество цветных и черно-белых картин, которые они готовы купить. Из-за этого Лука постоянно задается вопросом: "Сколько у меня есть вариантов, как продать клиентам картины, чтобы хотя бы C человек купили цветные картины?". Помогите Луке и защитите его от излишнего беспокойства.
Первая строка содержит два целых числа N и C ( 1 ≤ N ≤ 105, 1 ≤ C ≤ 20 ). Вторая строка содержит N целых чисел a i ( 1 ≤ a i ≤ 109 ). Третья строка содержит N целых чисел b i ( 1 ≤ b i ≤ 109 ). Четвертая строка содержит одно целое число Q ( 1 ≤ Q ≤ 105 ) - количество изменений требований клиентов. Каждая из следующих Q строк содержит три числа: номер клиента, меняющего требования P ( 1 ≤ P ≤ N ), новое максимальное количество цветных картин, которое он готов купить A p ( 1 ≤ A p ≤ 109 ) и новое максимальное количество черно-белых картин, которое он готов купить B p ( 1 ≤ B p ≤ 109 ).
Выведите Q строк, где в q -й строке записано единственное число - количество вариантов продать картины клиентам, чтобы хотя бы C человек купили цветные картины, по модулю 10007 после первых q изменений требований.
Разбалловка для личной олимпиады
Тесты 4-6 — числа n, q не превосходят 1000. Группа тестов оценивается в 30 баллов.
Тесты 7-13 — Полные ограничения. Группа тестов оценивается в 70 баллов.
2 2 1 1 1 1 1 1 1 1
1
2 2 1 2 2 3 2 1 2 2 2 2 2
4 4
4 2 1 2 3 4 1 2 3 4 1 4 1 1
66
Мирко большой любитель шахмат и программирования, но обычные шахматы уже наскучили ему, поэтому он начал экспериментировать и придумал свою игру. Он взял шахматную доску с N рядами и N столбцами и расположил на ней K ладей. Игра Мирко следует таким правилам: 1. У каждой ладьи есть своя сила, заданная натуральным числом. 2. Ладья видит все клетки поля в своем ряду и своем столбце кроме той, на которой стоит сама. 3. Клетка считается атакованной в том случае, если побитовый XOR сил всех ладей, которые видят эту клетку, положителен. Изначально Мирко некоторым образом расположил ладьи на поле, и теперь собирается сделать P перемещений. Каждый раз он будет брать одну ладью и ставить ее на другую клетку поля (при этом ладья не обязательно будет перемещена вдоль ряда или столбца в котором она стоит). После каждого перемещения, определите сколько клеток на поле атакованы.
Первая строка содержит 3 целых числа N , K , P ( 1 ≤ N ≤ 1000000000 , 1 ≤ K , P ≤ 10000 ). Каждая из следующих K строк содержит 3 натуральных числа R i , C i , X i ( 1 ≤ R i , C i ≤ N , 1 ≤ X i ≤ 1000000000 ), которые обозначают что на клетке ( R i , C i ) стоит ладья с силой X i . Каждая из следующих P строк содержит 4 натуральных числа R 1 , C 1 , R 2 , C 2 ( 1 ≤ R 1, C 1, R 2, C 2 ≤ N ), которые означают что ладья, стоящая на клетке ( R 1, C 1 ), была передвинута на поле ( R 2, C 2 ). Гарантируется, что в момент перемещения на клетке ( R 1, C 1 ) есть ладья и что ни в какой момент времени на одной клетке нет двух и более ладей.
Выведите P строк, где в k -й строке записано единственное число - количество клеток поля, атакованных после первых k перемещений.
2 2 2 1 1 1 2 2 1 2 2 2 1 1 1 1 2
4 0
2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2
4 2
3 3 4 1 1 1 2 2 2 2 3 3 2 3 3 3 3 3 3 1 1 1 1 2 3 1 3 2
6 7 7 9
Известный программист пробует себя в роли иллюзиониста. Его коронный фокус состоит в следующем.
Для заданного массива из n целых неотрицательных чисел a1, a2, ..., an он быстро подбирает магическое число b. Целое неотрицательное число b называется магическим для массива, если применение операции побитового исключающего ИЛИ с этим числом к каждому элементу массива превращает его в отсортированный массив. Иначе говоря,
\(\) (a_1\oplus b) \le (a_2\oplus b) \le ... \le (a_n\oplus b) \(\)где \(\oplus\) — операция побитового исключающего ИЛИ.
Чтобы фокус был более эффектным, после предъявления магического числа для заданного массива иллюзионист q раз выполняет следующее действие. Он предлагает зрителям изменить один из элементов массива и после этого снова пытается предъявить магическое число. При этом программист настолько отточил свое мастерство иллюзиониста, что каждый раз предъявляет зрителям минимальное возможное магическое число. Иногда фокус не удаётся, так как для полученного массива невозможно подобрать магическое число.
Требуется написать программу, которая по заданному исходно массиву, а также после каждого изменения элемента, вычисляет минимальное магическое число для полученного массива, либо определяет, что такого числа нет.
Исключающее ИЛИ — это логическая операция, обозначаемая знаком \(\oplus\), которая задаётся следующей таблицей истинности:
Определим побитовое исключающее ИЛИ для двух неотрицательных целых чисел x и y. Запишем каждое из целых чисел x и y в двоичной системе счисления, дополнив при необходимости более короткое из чисел ведущими нулями до равной длины. Побитовое исключающее ИЛИ двух целых чисел \(x\) и \(y\), обозначаемое также как \(\oplus\), это целое неотрицательное число, каждый разряд которого в двоичной системе счисления является исключающим ИЛИ соответствующих разрядов чисел \(x\) и \(y\). Например, \(5\oplus22=101_2\oplus10110_2=10011_2=19\).
Среди предложенных на олимпиаде языков программирования в языке Паскаль для обозначения исключающего ИЛИ используется оператор «xor», в остальных языках программирования используется оператор «^».
Первая строка входных данных содержит целое число n — количество чисел в массиве (1 ≤ n ≤ 106).
Вторая строка содержит n целых чисел a1, a2, ..., an — элементы массива (0 ≤ ai < 230).
Третья строка содержит целое число q — число изменений элемента массива (0 ≤ q ≤ 106).
Следующие q строк содержат по два целых числа pi и vi, где pi — номер элемента массива, который следует заменить (1 ≤ pi ≤ n), а vi — новое значение этого элемента (0 ≤ vi < 230).
Выходные данные должны содержать (q + 1) целых чисел b0, b1, ..., bq, по одному в строке.
Значение b0 — либо минимальное возможное магическое число для исходного массива, либо - 1, если такого числа не существует.
Для i от 1 до q значение bi — либо минимальное возможное магическое число для массива после первых i изменений, либо - 1, если такого числа не существует.
3 0 1 4 3 2 7 3 3 1 4
0 2 -1 4
Компания тестирует технологию получения антивещества, используемого в качестве топлива в межпланетном звездолёте. Антивещество получается в результате специальных экспериментов в реакторе.
Известно n типов экспериментов, приводящих к получению антивещества. В результате проведения эксперимента i-го типа в выходной контейнер реактора добавляется от li до ri граммов антивещества. Из соображений безопасности запрещается накапливать в контейнере более a граммов антивещества.
Затраты на проведение эксперимента i-го типа составляют ci, а стоимость одного грамма полученного антивещества составляет 109.
Если после проведения экспериментов в контейнере образовалось t граммов антивещества, а суммарные затраты на проведение экспериментов в реакторе составили s, то прибыль определяется по формуле (t·109 - s). Компании необходимо разработать стратегию проведения экспериментов, позволяющую максимизировать прибыль, которую можно гарантированно получить.
В зависимости от результатов предыдущих экспериментов стратегия определяет, эксперимент какого типа следует провести, или решает прекратить дальнейшее выполнение экспериментов. Стратегия позволяет гарантированно получить прибыль x, если при любых результатах проведения экспериментов: во-первых, в контейнере реактора оказывается не более a граммов антивещества, во-вторых, прибыль составит не менее x.
Например, пусть возможен только один тип эксперимента, порождающий от 4 до 6 граммов антивещества, затраты на его проведение равны 10, а вместимость контейнера составляет 17 граммов. Тогда после двукратного проведения эксперимента в контейнере может оказаться от 8 до 12 граммов антивещества. Если получилось 12 граммов, то больше проводить эксперимент нельзя, так как в случае получения 6 граммов антивещества контейнер может переполниться. В остальных случаях можно провести эксперимент в третий раз и получить от 12 до 17 граммов антивещества. В худшем случае придётся провести эксперимент трижды, затратив в сумме 30, прибыль составит (12·109 - 30) = 11 999 999 970.
Требуется написать программу, которая определяет максимальную прибыль x, которую гарантированно можно получить.
Первая строка входных данных содержит два целых числа: n — количество типов экспериментов и a — максимально допустимое количество антивещества в контейнере (1 ≤ n ≤ 100, 1 ≤ a ≤ 2 000 000).
Следующие n строк содержат по три целых числа li, ri и ci — минимальное и максимальное количество антивещества, получаемое в результате эксперимента типа i, и затраты на эксперимент этого типа, соответственно (1 ≤ li ≤ ri ≤ a, 1 ≤ ci ≤ 100).
Выходные данные должны содержать одно целое число — максимальную прибыль x, которую гарантированно можно получить.
1 17 4 6 10
11999999970
2 11 2 2 100 3 5 5
9999999890