В школе решили на один прямоугольный стол поставить два прямоугольных ноутбука. Ноутбуки нужно поставить так, чтобы их стороны были параллельны сторонам стола. Определите, какие размеры должен иметь стол, чтобы оба ноутбука на него поместились, и площадь стола была минимальна.
Вводится четыре натуральных числа, первые два задают размеры одного ноутбука, а следующие два — размеры второго. Числа не превышают 1000.
Выведите два числа — размеры стола. Если возможно несколько ответов, выведите любой из них (но только один).
В примерах указаны всевозможные ответы на поставленную задачу. Ваша программа должна вывести один из них.
10 2 2 10
20 2 2 20 4 10 10 4
5 7 3 2
9 5 5 9
Вася изготовил карточки, написав на них N первых заглавных букв латинского алфавита. Карточки Вася положил в стопку.
Дальше он берет первую сверху карточку и кладет ее в новую стопку. Далее вторую карточку он кладет вниз этой новой стопки, третью — наверх новой стопки, потом четвертую — опять вниз, следующую — наверх и т.д.
После этого оказалось, что карточки лежат строго по алфавиту, если просматривать их сверху вниз.
Напишите программу, которая выведет, в каком порядке карточки лежали в исходной стопке.
Вводится натуральное число \(N\) (\(N\) не превышает 26).
Выведите буквы, написанные на карточках в исходной стопке, если ее просматривать сверху вниз (должны быть выведены заглавные латинские буквы без пробелов между ними).
3
BCA
6
CDBEAF
«Нарисуйте» с помощью символов на экране лес. При этом не пользуйтесь командами перемещения курсора по экрану. Ваша программа должна последовательно выводить символы строк (или строки целиком).
Лес — это одна или несколько елочек. Каждая елочка характеризуется количеством треугольников в ней и размером самого маленького треугольника. Елочка состоит из треугольников, у которых вершины находятся строго друг под другом, и каждый следующий треугольник содержит на одну строку больше предыдущего.
Все елочки должны по вертикали начинаться с первой строки. Каждая елочка должна быть расположена как можно левее, при этом елочки не должны соприкасаться (т.е. возле символов елочки справа, слева, снизу, сверху, а также по диагонали не должно быть символов, изображающих другую елочку) и не должен нарушаться порядок следования елочек.
Елочки должны изображаться символами «#» (решеточка), а пустые места между ними — символами «.» (точка). Во всех строках должно быть выведено одинаковое количество символов, при этом обязательно должна быть строка, в которой последним символом является решеточка, в последней строке обязательно должны быть решеточки (т.е. должен быть выведен прямоугольник из точек и решеточек, в нем не должно быть лишних столбцов и строк).
Вводится число елочек \(N\), а дальше \(N\) пар натуральных чисел, описывающих елочки: первое число каждой пары задает количество треугольников в елочке, а второе — размер самого маленького треугольника. Елочки описываются в порядке слева направо (если смотреть на вершины елочек).
Гарантируется, что входные данные будут таковы, что количество символов, которое нужно будет вывести в одной строке, не превысит 79.
Выведите требуемый «рисунок». Для лучшего понимания смотрите примеры.
2 3 2 3 3
...#......#.... ..###....###... ...#....#####.. ..###.....#.... .#####...###... ...#....#####.. ..###..#######. .#####....#.... #######..###... ........#####.. .......#######. ......#########
3 1 1 2 1 3 2
#.#...#... ..#..###.. .###..#... .....###.. ....#####. ......#... .....###.. ....#####. ...#######
Некоторые банки выпускают банковские карты, которые могут использоваться для оплаты проезда в метро. При проходе через турникеты по этой карте каждый проход фиксируется, подсчитывается количество проходов за календарный месяц и раз в месяц с карточки списываются деньги в соответствии с тем, сколько было сделано проходов по специальным тарифам (приведены тарифы по состоянию на 15.10.2009):
Кол-во поездок | Стоимость (руб.) | Кол-во поездок | Стоимость (руб.) | Кол-во поездок | Стоимость (руб.) | Кол-во поездок | Стоимость (руб.) |
---|---|---|---|---|---|---|---|
1 | 22 | 19 | 362 | 37 | 586.13 | 55 | 804.38 |
2 | 44 | 20 | 380 | 38 | 598.25 | 56 | 816.5 |
3 | 64.33 | 21 | 392.13 | 39 | 610.38 | 57 | 828.63 |
4 | 84.67 | 22 | 404.25 | 40 | 622.5 | 58 | 840.75 |
5 | 105 | 23 | 416.38 | 41 | 634.63 | 59 | 852.88 |
6 | 124 | 24 | 428.5 | 42 | 646.75 | 60 | 865 |
7 | 143 | 25 | 440.63 | 43 | 658.88 | 61 | 863.5 |
8 | 162 | 26 | 452.75 | 44 | 671 | 62 | 862 |
9 | 181 | 27 | 464.88 | 45 | 683.13 | 63 | 860.5 |
10 | 200 | 28 | 477 | 46 | 695.25 | 64 | 859 |
11 | 218 | 29 | 489.13 | 47 | 707.38 | 65 | 857.5 |
12 | 236 | 30 | 501.25 | 48 | 719.5 | 66 | 856 |
13 | 254 | 31 | 513.38 | 49 | 731.63 | 67 | 854.5 |
14 | 272 | 32 | 525.5 | 50 | 743.75 | 68 | 853 |
15 | 290 | 33 | 537.63 | 51 | 755.88 | 69 | 851.5 |
16 | 308 | 34 | 549.75 | 52 | 768 | 70 | 850 |
17 | 326 | 35 | 561.88 | 53 | 780.13 | ||
18 | 344 | 36 | 574 | 54 | 792.25 |
Родители завели двум братьям Пете и Васе по такой карточке. Петя и Вася иногда ездят вместе, а иногда - порознь. Естественно, когда они едут не вместе, то каждый из них пользуется своей карточкой. Когда же они едут вместе, они могут как воспользоваться каждый своей карточкой, так и оба пройти по одной из карточек (совершив два прохода по этой карточке).
Кроме того, они заметили, что в некоторых случаях бывает выгодно совершать лишние проходы по карточке (например, если по карточке за месяц совершено 69 проходов, то надо сделать 70-й - списанная сумма в этом случае окажется меньше).
Известно, что в наступающем месяце Вася собирается сделать A самостоятельных поездок, Петя - B самостоятельных поездок, и еще С поездок они сделают вместе (то есть всего они сделают A+B+2C проходов через турникеты). Напишите программу, которая по заданным числам A, B и C определит минимальную сумму, которую они могут потратить (с учетом банковских комиссий, при необходимости совершив лишние проходы через турникеты).
Вводятся целые числа \(A\), \(B\), \(C\) (каждое из них из диапазона от 0 до 1000).
Выведите, сколько рублей будет списано суммарно с Васиной и Петиной карточек. Результат должен быть выведен с двумя знаками после десятичной точки.
1 1 0
64.00
59 0 0
860.00
10 10 10
721.25
0 0 30
860.00
Из описания некоего растения: «… его время жизни составляет 20 лет. В первый год плод растения попадает в землю. Первые побеги растения появляются лишь на второй год. Плодоносить растение начинает с четвертого года и ежегодно дает по 1 плоду, которые сразу попадают в землю, и из них вырастают такие же растения. На двадцатый год своей жизни растение плодоносит в последний раз, а на двадцать первый год – погибает».
Напишите программу, которая определяет, сколько живых растений будет в N-м году, если в первый год мы посадим один плод этого растения. Только что посаженные плоды за растения не считаются. Также не считаются живыми растения, для которых данный год является 21-м (или больше) годом жизни.
Замечания
Из описания следует, что плод, который появился в 4-м году, сразу попадает в землю, и этот год считается 1-м годом жизни нового растения (при этом при подсчете числа живых растений в этом году данное растение еще не будет учтено). Это растение даст первые побеги в 5-м году, начнет плодоносить — в 7-м, а последний раз будет плодоносить в 23-м году и перестанет быть живым – в 24-м.
При подсчете числа живых растений в 20-м году исходное растение еще считается живым, а в 21-м — уже не считается.
Вводится единственное натуральное число N, не превышающее 100.
Выведите единственное число – сколько живых растений будет в N‑м году. Только что посаженные плоды за растения не считаются.
Комментарий к примеру тестов
1. Первые три года растение не плодоносит, на четвертый год оно дало 1 плод, но он еще не считается полноценным живым растением.
2. Первые 3 года у нас есть 1 растение, на 4-й год оно дает 1 плод; на 5-й год этот плод прорастает, а исходное растение дает еще 1 плод; на 6-й год второй плод прорастает, исходное растение дает плод, который растением еще не считается.
3. Начиная с 4-го года, исходное растение начинает давать по одному плоду (и дает по плоду на 4-м, 5-м, 6-м, 7-м, 8-м,… годах). Растение, которое получилось из плода, который появился на 4-м году, начинает плодоносить с 7-го года (и дает плоды на 7-м, 8-м, … годах). Растение, которое получилось из плода, который появился на 5-м году, начинает плодоносить с 8-го года. При этом все плоды, появившиеся на 9-м году, растениями еще не считаются. Итого, учитывая исходное растение, у нас будет 9 растений.
Подзадача | Баллы | Ограничения | Необходимые подзадачи |
1 | 30 | \(n \le 15\) | тесты |
2 | 30 | \(n \le 40\) | 1 |
3 | 40 | Нет дополнительных ограничений | 2 |
4
1
6
3
9
9