ООО «Симптотика» собирается наладить выпуск обучающих игр для детей младшего дошкольного возраста. Одной из придуманных игр был набор кубиков, из которых можно было собирать различные фигуры. Кубики упаковывались в коробку размером N × N × 1 кубиков.
Однако, многочисленные маркетинговые исследования показали, что детям неинтересно просто собирать различные фигурки. Гораздо интереснее складывать некоторый набор кубиков на дно коробки в столбики, а после этого переворачивать коробку на 90 градусов по часовой стрелке и смотреть, как именно меняется их расположение. Будем для простоты считать, что коробка поворачивается мгновенно, после чего все кубики падают на дно. На следующем рисунке продемонстрировано, как выглядит расположение кубиков в коробке до и после поворота на 90 градусов.
Разумеется, многим детям становится интересно, как будет выглядеть расположение кубиков после K поворотов в том же направлении. Требуется написать программу, которая вычисляет итоговое положение кубиков в коробке после K поворотов.
Сначала вводятся целые числа N и K (1 ≤ N ≤ 10, 0 ≤ K ≤ 109). После этого, во второй строке вводятся N неотрицательных чисел, не превышающих N. i-ое число обозначает количество кубиков в столбце под номером i.
Необходимо вывести N чисел через пробел, i-ое из которых обозначает количество чисел в i-ом столбце в полученном после K поворотов расположении кубиков.
Пример соответствует иллюстрации из условия.
5 1 1 3 4 0 1
4 2 2 1 0
Выведите все элементы списка с четными индексами
(то есть A[0]
, A[2]
, A[4]
, ...).
Программа должна быть эффективной и не выполнять лишних действий!
Вводится список чисел. Все числа списка находятся на одной строке.
Выведите ответ на задачу.
1 2 3 4 5
1 3 5
Выведите все четные элементы списка.
Вводится список чисел. Все числа списка находятся на одной строке.
Выведите ответ на задачу.
1 2 2 3 3 3 4
2 2 4
Найдите количество положительных (\(> 0\)) элементов в данном списке.
Вводится список чисел. Все числа списка находятся на одной строке.
Выведите ответ на задачу.
1 -2 3 -4 5
3
В Тридевятом царстве царь был любителем разных заморских традиций. Как прознает, что в другом царстве есть какой-то обычай, сразу думает, как бы его к тридевятым реалиям приспособить.
Вот неделю назад вернулось посольство из Тридесятого царства. И главный посол доложил царю: дескать, придумал Тридесятый царь следующую вещь. Чтобы как-то зарегулировать гуляния народные, повелел он указать определенные дни, и в эти дни устраивать широкие гуляния, а в остальные дни массовые сборища запретить. И с тех пор жизнь в Тридесятом царстве стала прекрасной: гулять так гулять, работать так работать, и все строго по цареву указу.
Понравилась мысль такая царю Тридевятого царства. Подумал он ввести и у себя такие порядки. Собрал царь советников своих, и говорит: подготовьте мне список дней, в которые гулять можно. Только не на год, а на \(N\) дней вперед — посмотрим, дескать, что получится; понравится — сделаем круглогодичным.
И вот вчера принесли советники царю список. Но вот незадача: каждый советник свой список приготовил, да еще и обоснование предложил, какой праздник в какой из этих дней надо отмечать. И у всех советников праздники важные, но у всех — разные! Царь думал-думал и решил: а возьмем их все — объединим предложения советников! Если какой-то день есть в списке хотя бы одного советника, то объявим этот день праздничным, и пускай народ гуляет! Глядишь, и не будет недовольных.
Только одна проблема осталась: некоторые дни оказались в списках сразу у нескольких советников. Но царь и тут нашел выход: перенесем некоторые праздники на более поздние дни, так, чтобы в каждый день получался только один праздник, и переносы были бы как можно короче.
Пусть, например, четыре советника сразу предложили сделать некоторый день (пускай день 5) праздничным. Тогда перенесем три из этих четырех праздников на дни 6, 7 и 8 — так, что праздничными будут дни с 5 по 8 включительно. А если оказывается, что, например, день 7 тоже предложен в качестве праздничного кем-нибудь из советников, то перенесем этот праздник еще дальше — на день 9.
Напишите программу, которая, зная предложения советников, определит, какие дни будут праздничными, а какие нет. Не забывайте, что праздники можно переносить только на более поздние дни; на более ранние переносить нельзя.
На первой строке входного файла находится одно число \(N\) — количество дней, на которые царь хочет произвести планировку праздников.
На второй строке входного файла находятся \(N\) неотрицательных целых чисел — для каждого дня указано, сколько советников предложили считать его праздничным.
Гарантируется, что \(1\leq N\leq 100\,000\), и что сумма всех чисел во второй строке входного файла не превосходит \(100\,000\).
В выходной файл выведите одну строку, состоящую из символов “+
” или “-
”. “+
” обозначайте праздничный день, “-
” — непраздничный. Выведите как минимум \(N\) символов — по одному для каждого
из дней, на которые проводится планирование. Но если праздники приходится переносить на дни после \(N\)-го (что допустимо), то выведите больше символов — до последнего праздничного дня.
Символы разделяйте пробелами.
5 0 3 0 0 0
- + + + -
10 0 4 0 2 0 0 0 0 1 0
- + + + + + + - + -
3 0 3 0
- + + +