---> 154 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 23 24 25 26 27 28 29 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Развитие химической науки привело к тому, что высшие фуллерены (сложные молекулы углерода в виде шарика или продолговатой трубки) стали недорогими в производстве. Благодаря своим уникальным оптическим свойствам они нашли свое место и в ювелирной промышленности. Ювелирный дом «Кёрл, Крото и Смолли» выпустил уникальную коллекцию украшений из фуллеренов. Украшение продается в виде набора трубок-фуллеренов различной длины, из которых можно составить украшение самостоятельно.

Норма Джин очень любит сложные углеродные соединения и купила себе набор фуллеренов для составления украшений. Ее фирменный стиль состоит в том, чтобы носить украшения, составленные ровно из трех трубок фуллерена, причем в результате должен получаться тупоугольный треугольник. Норма Джин — объект постоянной охоты папарацци, поэтому не может позволить себе дважды появиться на людях с одним и тем же украшением.

Помогите Норме Джин узнать, сколько вечеров она сможет посетить с имеющимся у нее набором фуллереновых трубок. Фуллереновые трубки одинаковой длины считаются различными. Треугольники считаются различными, если они отличаются хотя бы одной трубкой. Треугольники, состоящие из одних и тех же трубок, считаются одинаковыми независимо от порядка трубок.

Входные данные

Первая строка входного файла содержит одно число N (1 ≤ N ≤ 100) — количество фуллереновых трубок в наборе Нормы Джин.

Вторая строка содержит N упорядоченных по возрастанию целых чисел Li (1 ≤ Li ≤ 20 000) — длины трубок.

Выходные данные

Выведите одно целое число — количество вечеров, на которые сможет сходить Норма Джин.

Примеры
Входные данные
4
2 2 3 4
Выходные данные
3
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Формат XML является распространенным способом обмена данными между различными программами. Недавно программист Иванов написал небольшую программу, которая сохраняет некоторую важную информацию в виде XML-строки.

XML-строка состоит из открывающих и закрывающих тегов.

Открывающий тег начинается с открывающей угловой скобки (<), за ней следует имя тега — непустая строка из строчных букв латинского алфавита, а затем закрывающая угловая скобка (>). Примеры открывающих тегов: <a>, <dog>.

Закрывающий тег начинается с открывающей угловой скобки, за ней следует прямой слеш (/), затем имя тега — непустая строка из строчных букв латинского алфавита, а затем закрывающая угловая скобка. Примеры закрывающихся тегов: </a>, </dog>.

XML-строка называется корректной, если она может быть получена по следующим правилам:

  • Пустая строка является корректной XML-строкой.
  • A и B — корректные XML-строки, то строка AB, получающаяся приписыванием строки B в конец строки A, также является корректной XML-строкой.
  • Если A — корректная XML-строка, то строка <X>A</X>, получающаяся приписыванием в начало A открывающегося тега, а в конец — закрывающегося с таким же именем, также является корректной XML-строкой. Здесь X — любая непустая строка из строчных букв латинского алфавита.

Например, представленные ниже строки:

<a></a>

<a><ab></ab><c></c></a>

<a></a><a></a><a></a>

являются корректными XML-строками, а такие строки как:

<a></b>

<a><b>

<a><b></a></b>

не являются корректными XML-строками.

Иванов отправил файл с сохраненной XML-строкой по электронной почте своему коллеге Петрову. Однако, к сожалению, файл повредился в процессе пересылки: ровно один символ в строке заменился на некоторый другой символ.

Требуется написать программу, которая по строке, которую получил Петров, восстановит исходную XML-строку, которую отправлял Иванов.

Входные данные

Входной файл содержит одну строку, которая заменой ровно одного символа может быть превращена в корректную XML-строку. Длина строки лежит в пределах от 7 до 1000, включительно. Строка содержит только строчные буквы латинского алфавита и символы «<» (ASCII код 60), «>»(ASCII код 62) и «/»(ASCII код 47).

Строка во входном файле заканчивается переводом строки.

Выходные данные

Выходной файл должен содержать корректную XML-строку, которая может быть получена из строки во входном файле заменой ровно одного символа на другой. Если вариантов ответа несколько, можно вывести любой.

Примеры входных и выходных файлов

input

output

<a></b>

<a></a>

<a><aa>

<a></a>

<a><>a>

<a></a>

<a/</a>

<a></a>


ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Пусть нам дано натуральное число \(N\). Рассмотрим множество различных целых чисел \(\{a_1, a_2, \dots, a_k\}\), где каждое число лежит в интервале от \(0\) до \(N-1\) включительно. Назовём такое множество свободным от сумм, если в этом множестве не найдётся таких трёх чисел, что сумма двух из них сравнима с третьим по модулю \(N\). Строго говоря, назовём множество свободным от сумм, если для каждой тройки (не обязательно различных) индексов \(x\), \(y\) и \(z\) (\(1\leq x,y,z\leq k\)) выполняется неравенство: \(\)(a_x+a_y) \bmod N \neq a_z\(\)

где \(p \bmod q\) — остаток от деления \(p\) на \(q\).

Например, при \(N=6\) множествами, свободными от сумм, не являются, например, \(\{0\}\) (т.к. \((0+0)\bmod 6=0\)), \(\{1,2\}\) (т.к. \((1+1) \bmod 6=2\)), \(\{3,4,5\}\) (т.к. \((4+5)\bmod 6=3\)), но множество \(\{1,3,5\}\) является свободным от сумм.

По заданному \(N\) определите, сколько существует множеств, свободных от сумм.

Входные данные

Во входном файле находится одно целое число \(N\). Гарантируется, что \(1\leq N\leq 35\).

Выходные данные

В выходной файл выведите одно число — ответ на задачу.

Примечание

Все множества, свободные от сумм, для \(N=6\) — это следующие: \(\{5\}\), \(\{4\}\), \(\{3\}\), \(\{3,5\}\), \(\{3,4\}\), \(\{2\}\), \(\{2,5\}\), \(\{2,3\}\), \(\{1\}\), \(\{1,5\}\), \(\{1,4\}\), \(\{1,3\}\), \(\{1,3,5\}\), \(\{\}\) (последнее множество — пустое, т.е. не содержащее ни одного элемента, с \(k=0\) — тоже считается свободным от сумм).

Примеры
Входные данные
2
Выходные данные
2
Входные данные
6
Выходные данные
14
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Магическим квадратом будем называть квадрат с одинаковой суммой чисел по всем вертикалям и горизонталям; никаких требований на суммы по диагоналям накладывать не будем. Составьте такой квадрат из заданного набора чисел.

Входные данные

Во входном файле записаны 16 различных целых чисел в интервале от 0 до 32 768.

Выходные данные

В выходной файл необходимо вывести искомое расположение чисел, составляющее магический квадрат \(4\times 4\) (каждое число должно встречаться ровно один раз), в четырех строках по четыре числа, или строку «NO SOLUTION», если квадрат составить нельзя.

Примеры
Входные данные
1 2 3 4 
5 6 7 8 
9 10 11 12 
13 14 15 16 
Выходные данные
     1     6    13    14
     2    11    12     9
    15     7     4     8
    16    10     5     3

Страница: << 23 24 25 26 27 28 29 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест