---> 9 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: 1 2 >> Отображать по:
ограничение по времени на тест
10.0 second;
ограничение по памяти на тест
64 megabytes

Отсортируйте данный массив, используя сортировку слиянием.

Входные данные

Первая строка входных данных содержит количество элементов в массиве N, N ≤ 105. Далее идет N целых чисел, не превосходящих по абсолютной величине 109.

Выходные данные

Выведите эти числа в порядке неубывания.

Примеры
Входные данные
2
3 1
Выходные данные
1 3 

Назовем два массива похожими, если они состоят из одних и тех же элементов (без учета кратности). По двум данным массивам выясните, похожие они или нет.

Входные данные

В первой строке содержится число N  (1 ≤ N ≤ 100000) – размер первого массива. Во второй строке идет N целых чисел, не превосходящих по модулю 109 – элементы массива. Далее аналогично задается второй массив.

Выходные данные

Программа должна вывести слово YES, если массивы похожи, и слово NO в противном случае.

Примеры
Входные данные
3
1 7 9
4
9 7 7 1

Выходные данные
YES
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Как известно, красить забор Тому Сойеру помогали многочисленные друзья. Каждый друг покрасил неcколько подряд идущих досок, при этом какие-то доски могли быть покрашены несколько раз, а какие-то доски могли остаться непокрашенными. Определите общее количество покрашенных досок.

Входные данные

В первой строке содержится натуральное число N ≤ 105  – количество друзей Тома Сойера. Далее идет N пар целых неотрицательных чисел  – номер (от начала забора) доски, с которой друг начал красить забор и номер доски, на которой он закончил покраску. Каждый друг покрасил непрерывный участок забора, включая две заданные доски. Номера досок  – целые числа от 1 до 109.

Выходные данные

Программа должна вывести единственное число  – суммарное количество покрашенных досок.

Примеры
Входные данные
3
1 2
3 4
2 3

Выходные данные
4
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Вася коллекционирует спичечные этикетки. Для этого у него есть N альбомов вместимостью K1, K2, ..., KN этикеток. Вася хочет, чтобы в случае утери одного любого альбома каждая этикетка осталась у него хотя бы в одном экземпляре. Для этого он покупает каждую этикетку в двух экземплярах, и наклеивает их в два разных альбома. Какое максимальное количество различных этикеток при этом может оказаться в его коллекции?

Входные данные

В первой строке  содержится  число N  – количество альбомов.  Во второй строке идет N чисел K1, K2, ..., KN, задающих вместимости альбомов. N  – натуральное число из диапазона от 2 до 1000. Вместимость каждого альбома задается натуральным числом, суммарная вместимость всех альбомов не превышает 100000 этикеток.

Выходные данные

Выведите сначала число E  – максимальное количество различных этикеток, которое может собрать Вася с соблюдением выдвинутого условия. Затем выведите E пар чисел  – каждая пара чисел задает номера двух альбомов, куда будет вклеена очередная этикетка.

Примеры
Входные данные
4
1 2 1 1
Выходные данные
2
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Ассоциация Тапкодер организует Всемирное парное соревнование сильнейших программистов. К участию в соревновании допущены первые 2k зарегистрировавшихся участников, которым присвоены номера от 1 до 2k.

Соревнование будет проходить по олимпийской системе. В первом туре первый участник встречается со вторым, третий с четвертым и так далее. В каждой паре победителем становится участник, первым решивший предложенную задачу, при этом ничьих не бывает. Все победители очередного тура и только они являются участниками следующего тура. В каждом туре пары составляются из участников в порядке возрастания присвоенных им номеров. Соревнование продолжается до тех пор, пока не останется один победитель.

Организаторам стало известно, что некоторые пары участников заранее договорились о результате встречи между собой, если такая встреча состоится. Для всех остальных встреч, кроме n договорных, возможен любой исход.

Некоторые m участников соревнования представили свои резюме в ассоциацию Тапкодер с целью поступления на работу. Организаторов интересует, до какого тура может дойти каждый из претендентов при наиболее благоприятном для него стечении обстоятельств. При этом для каждого участника в отдельности считается, что все недоговорные встречи, в том числе те, в которых он не участвует, закончатся так, как ему выгодно, а все состоявшиеся договорные встречи закончатся в соответствии с имеющимися договоренностями.

Требуется написать программу, которая для каждого из претендентов определяет максимальный номер тура, в котором он может участвовать.

Входные данные

В первой строке заданы три целых числа k (1 ≤ k ≤ 60), n (0 ≤ n ≤ 100 000) и m (1 ≤ m ≤ 100 000). В следующих n строках описаны n пар участников, которые договорились между собой о том, что первый из двух участников пары выиграет встречу, если она состоится. Гарантируется, что каждая пара участников присутствует во входных данных не более одного раза, при этом, если задана пара x y, то пары y x быть не может, кроме того, x y. В последней строке перечислены номера участников, желающих работать в Тапкодере, в порядке возрастания их номеров. Все номера претендентов на работу различны.

Выходные данные

Выходные данные должны содержать m целых чисел — максимальные номера туров, до которых могут дойти соответствующие претенденты на работу. Туры нумеруются от 1 до k.

Комментарии к примерам тестов.

1. У каждого из участников есть возможность выйти в финал, так как договорных матчей нет.

2. Если четвертый участник выиграет у третьего, то договорная встреча первого и третьего не состоится, что благоприятно для первого.

3. Первому участнику благоприятно во втором туре играть с третьим, а не с четвертым, в свою очередь, четвертый может выиграть у третьего и также выйти в финал.

Система оценки

Тесты к этой задаче состоят из четырех групп, баллы начисляются только при прохождении всех тестов группы и всех тестов предыдущих групп.

0. Тесты 1–10. k <= 5. Эта группа оценивается в 30 баллов.

1. Тесты 11–14. k <= 20. Эта группа оценивается в 20 баллов.

2. Тесты 15–18. k <= 30. Эта группа оценивается в 20 баллов.

3. Тесты 19–23. Дополнительные ограничения отсутствуют. Эта группа оценивается в 30 баллов.

Примеры
Входные данные
2 0 3
1 3 4
Выходные данные
2 2 2
Входные данные
3 1 1
3 1
1
Выходные данные
3
Входные данные
3 3 4
1 2
1 3
4 1
1 2 3 4
Выходные данные
3 1 2 3

Страница: 1 2 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест