---> 9 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 1 2 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Даны две бесконечных возрастающих последовательности чисел A и B. i-ый член последовательности A равен i2. i-ый член последовательности B равен i3.

Требуется найти Cx, где C – возрастающая последовательность, полученная при объединении последовательностей A и B. Если существует некоторое число, которое встречается и в последовательности A и в последовательности B, то в последовательность C это число попадает в единственном экземпляре.

Входные данные

В единственной строке входного файла дано натуральное число x (1 ≤ x ≤ 107).

Выходные данные

В выходной файл выведите Cx.

Примеры
Входные данные
1
Выходные данные
1
Входные данные
2
Выходные данные
4
Входные данные
4
Выходные данные
9
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Задан выпуклый многоугольник, составленный из проволоки. Требуется найти количество устойчивых положений многоугольника (когда он опирается на ось X двумя точками и центр масс многоугольника находится между ними)

Петя и его друг Андрейка только что познакомились с китайской мифологией. Особенно им понравились драконы. Поэтому мальчики решили сделать своих драконов из проволоки. Андрейка взял белую проволоку и согнул из неё дракона Лун-Инь: этот дракон спал, свернувшись клубком на столе. Тогда Петя взял чёрную проволоку и согнул дракона Лун-Ян. Этот дракон ничем не походил на Андрейкиного Лун-Иня. Его тело состояло из отрезков прямых, а когда он спал, то сворачивался в виде плоской замкнутой несамопересекающейся ломаной. Более того, Лун-Ян не ложился плашмя на стол для сна, а вставал перпендикулярно поверхности. Удержать равновесие дракон может только тогда, когда существуют две его различные точки, касающиеся стола, такие что центр масс дракона находится строго между ними.

Вам требуется узнать, сколько было устойчивых положений у дракона, в которых он мог сохранять равновесие во время сна, если известно, что форма ломаной в виде которой дракон спит всегда одна и та же.

Входные данные

В первой строке входного файла содержится число \(n\) (3 ≤ \(n\) ≤ 1000) – количество вершин ломаной и два целых числа \(x_c\) и \(y_c\) – координаты центра масс дракона (-1000 ≤ \(x_c\), \(y_c\) ≤ 1000). В следующих \(n\) строках содержится по два целых числа \(x_i\) и \(y_i\) (-1000 ≤ \(x_i\), \(y_i\) ≤ 1000) – координаты вершин ломаной в порядке обхода против часовой стрелки (ось \(O_X\) направлена вправо, а ось \(O_Y\) – вверх).

Выходные данные

В первой строке выходного файла выведите число устойчивых положений дракона.

Примеры
Входные данные
12 1 2
3 4
2 4
2 3
1 3
1 4
0 4
0 0
1 0
1 1
2 1
2 0
3 0
Выходные данные
4
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Глеб обожает шоппинг. Как-то раз он загорелся идеей подобрать себе майку и штаны так, чтобы выглядеть в них максимально стильно. В понимании Глеба стильность одежды тем больше, чем меньше разница в цвете элементов его одежды.

В наличии имеется N (1 ≤ N ≤ 100 000) маек и M (1 ≤ M ≤ 100 000) штанов, про каждый элемент известен его цвет (целое число от 1 до 10 000 000). Помогите Глебу выбрать одну майку и одни штаны так, чтобы разница в их цвете была как можно меньше.

Входные данные

Сначала вводится информация о майках: в первой строке целое число N (1 ≤ N ≤ 100 000) и во второй N целых чисел от 1 до 10 000 000 — цвета имеющихся в наличии маек. Гарантируется, что номера цветов идут в возрастающем порядке (в частности, цвета никаких двух маек не совпадают).

Далее в том же формате идёт описание штанов: их количество M (1 ≤ M ≤ 100 000) и в следующей строке M целых чисел от 1 до 10 000 000 в возрастающем порядке — цвета штанов.

Выходные данные

Выведите пару неотрицательных чисел — цвет майки и цвет штанов, которые следует выбрать Глебу. Если вариантов выбора несколько, выведите любой из них.

Примеры
Входные данные
2
3 4
3
1 2 3
Выходные данные
3 3
Входные данные
2
4 5
3
1 2 3
Выходные данные
4 3

Во время лыжных соревнований \(N\) спортсменов стартуют с интервалом в 1 минуту. Скорость каждого лыжника на дистанции постоянна: \(i\)-й лыжник преодолевает 1 км за \(w_i\) минут. Длина трассы равна \(L\) км. Считается, что \(i\)-й лыжник обогнал \(j\)-го (совершил обгон), если он стартовал позже \(j\)-го, а пришёл к финишу раньше него. Подсчитайте суммарное число совершённых во время гонки обгонов.

Входные данные

Первая строка входного файла содержит два целых числа \(N\) и \(L\). Во второй строке через пробел расположены \(N\) целых чисел \(w_i\).

Выходные данные

Выведите единственное число - суммарное количество обгонов.

Примечания

Во всех тестах \(1 \le L \le 10^9\), \(1 \le w_i \le 10^9\) при \(i = 1, 2, \dots, N\). Тесты состоят из трёх групп.

  1. Тесты 1 и 2 из условия, оцениваются в 0 баллов.
  2. В тестах этой группы \(1 \le N \le 10\,000\), эти тесты оцениваются в 50 баллов, при этом баллы начисляются только при прохождении всех тестов группы.
  3. Off-line группа, \(1 \le N \le 500\,000\). При этом баллы за тесты этой группы ставятся только тогда, когда программа проходит все тесты предыдущей группы. Если программа не проходит хотя бы один из тестов группы 1, то баллы за тесты группы 2 не ставятся. Тесты этой группы оцениваются независимо друг от друга.
Примеры
Входные данные
2 1
20 19
Выходные данные
0
Входные данные
5 3
3 6 2 4 1
Выходные данные
7

Страница: << 1 2 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест