Страница: 1 2 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Алеша Попович и Добрыня Никитич сражаются со стаей двух- и трехголовых драконов. Они по очереди взмахивают мечами, и одним махом могут отрубить любое (по своему желанию) число голов, но только у одного дракона. Отрубивший последнюю голову у последнего дракона получает в жены прекрасную принцессу.

Кто из богатырей (начинающий или второй) может получить в жены принцессу независимо от действий другого?

Входные данные

Во входном файле записано два числа N и M — количество двух- и трехголовых драконов соответственно (оба числа целые из диапазона от 0 до 100).

Выходные данные

В выходной файл выведите сначала число 1 или 2 определяющее, кто из богатырей имеет все шансы получить в жены принцессу (1 — тот, кто начинает, 2 — второй). В случае 1 выведите также все варианты его первого хода, которые к этому приводят: сначала выведите количество различных выигрышных ходов (при этом отрубание одинакового количества голов у разных двухголовых драконов считается одним и тем же ходом, так же и для трехголовых), а затем сами ходы. Каждый ход задается парой чисел: первое число определяет у сколькиголового дракона нужно отрубать головы, а второе — сколько голов нужно отрубать.

Примеры
Входные данные
2 0
Выходные данные
2
Входные данные
3 2
Выходные данные
1
2
2 2
3 2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Карту местности условно разбили на квадраты, и посчитали среднюю высоту над уровнем моря для каждого квадрата.

Когда идет дождь, вода равномерно выпадает на все квадраты. Если один из четырех соседних с данным квадратом квадратов имеет меньшую высоту над уровнем моря, то вода с текущего квадрата стекает туда (и, если есть возможность, то дальше), если же все соседние квадраты имеют большую высоту, то вода скапливается в этом квадрате.

Разрешается в некоторых квадратах построить водостоки. Когда на каком-то квадрате строят водосток, то вся вода, которая раньше скапливалась в этом квадрате, будет утекать в водосток.

Если есть группа квадратов, имеющих одинаковую высоту и образующих связную область, то если хотя бы рядом с одним из этих квадратов есть квадрат, имеющий меньшую высоту, то вся вода утекает туда, если же такого квадрата нет, то вода стоит во всех этих квадратах. При этом достаточно построить водосток в любом из этих квадратов, и вся вода с них будет утекать в этот водосток.

Требуется определить, какое минимальное количество водостоков нужно построить, чтобы после дождя вся вода утекала в водостоки.

Входные данные

Во входном файле записаны сначала числа N и M, задающие размеры карты — натуральные числа, не превышающие 100. Далее идет N строк, по M чисел в каждой, задающих высоту квадратов карты над уровнем моря. Высота задается натуральным числом, не превышающим 10000. Считается, что квадраты, расположенные за пределами карты, имеют высоту 10001 (то есть вода никогда не утекает за пределы карты).

Выходные данные

В выходной файл выведите минимальное количество водостоков, которое необходимо построить.

Примеры
Входные данные
4 4
1 2 4 1
2 4 4 4
1 4 3 2
1 2 3 2
Выходные данные
4
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Вася коллекционирует спичечные этикетки. Для этого у него есть N альбомов вместимостью K1, K2, …, KN этикеток. Вася хочет, чтобы в случае утери одного любого альбома каждая этикетка осталась у него хотя бы в одном экземпляре. Для этого он покупает каждую этикетку в двух экземплярах, и наклеивает их в два разных альбома. Какое максимальное количество различных этикеток при этом может оказаться в его коллекции?<

Входные данные

Входной файл содержит сначала число N — количество альбомов, а затем N чисел K1, K2, …, KN, задающих вместимости альбомов. N — натуральное число из диапазона от 2 до 1000. Вместимость каждого альбома задается натуральным числом, суммарная вместимость всех альбомов не превышает 100000 этикеток.

Выходные данные

В выходной файл выведите сначала число E — максимальное количество различных этикеток, которое может собрать Вася с соблюдением выдвинутого условия. Затем выведите E пар чисел — каждая пара чисел задает номера двух альбомов, куда будет вклеена очередная этикетка.

Примеры
Входные данные
4
1 2 1 1
Выходные данные
2
1 2
2 3
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Заданы координаты клеток на прямой, в которые можно посадить ели. Для каждого сорта ели определены тени, отбрасываемые на восток и на запад. Ели не могут расти в тени других елей. Требуется высадить как можно больше елей и для каждой занятой клетки указать, какой сорт ели будет туда посажен.

Мэр города Урюпинска решил посадить на главной аллее города, которая проходит с запада на восток, голубые ели. Причем сажать ели можно не во всех местах, а только на специально оставленных при асфальтировании аллеи клумбах.

Как оказалось, голубые ели бывают M различных сортов. Для ели каждого сорта известна максимальная длина ее тени в течение дня в западном и в восточном направлении (Wi и Ei соответственно). При этом известно, что ели растут гораздо лучше, если в течение дня они не оказываются в тени других елей.

Координатная ось направлена вдоль аллеи с запада на восток.

По заданным координатам клумб вычислите максимальное число елей, которое можно посадить, соблюдая условие о том, что никакая ель не должна попадать в тень от другой ели.

Входные данные

Во входном файле записано сначала натуральное число M — количество сортов елей (1M100). Затем идет M пар чисел Wi, Ei, описывающих максимальную длину тени в западном и восточном направлении в течение дня для каждого сорта ели (числа Wi, Ei — целые, из диапазона от 0 до 30000). Далее идет натуральное число N — количество клумб, в которых можно сажать ели (1N100). Далее идет N чисел, задающих координаты клумб (координаты — целые числа, по модулю не превышающие 30000). Клумбы перечислены с запада на восток (в порядке возрастания их координат).

Примечание

Если на клумбе с координатой X мы посадили ель, максимальная тень которой в восточном направлении равна E, то все клумбы с координатами от X+1 до X+E–1 попадают в тень от этой ели, а клумба с координатами X+E — уже нет. Аналогично для тени в западном направлении.

Выходные данные

В выходной файл выведите сначала число A — максимальное количество елей, которые удастся посадить, а затем A пар чисел, описывающих ели. Первое число каждой пары задает номер клумбы, в которую садится ель. Второе число определяет номер сорта этой ели.

Примеры
Входные данные
3
10 1
2 2
1 10
10
0
1
3
5
7
9
11
13
15
16
Выходные данные
8
9 2
8 2
7 2
6 2
5 2
4 2
3 2
1 2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Пользователь просматривает таблицу в Internet Explorer и пользуется для прокрутки изображения колесиком на мышке. При этом все изображение сдвигается вверх или вниз на T пикселов. Пользователю очень не нравится, когда курсор мыши оказывается на горизонтальных линиях, разделяющих строки таблицы. Поэтому он хочет выбрать такое положение для курсора мыши на экране, чтобы в процессе прокрутки до конца таблицы курсор как можно меньшее число раз пересекался с линиями таблицы.

При этом если в каком-то положении курсор оказывается на двух линиях таблицы, то это считается за два пересечения курсора с линиями таблицы. Если какую-то линию курсор мыши пересекает в двух положениях (то есть, например, высота курсора 10 пикселей, а при прокрутке таблица сдвигается на 7 пикселей, тогда курсор мыши может оказываться на одной линии в двух состояниях прокрутки), то это также считается за два пересечения.

Экран монитора имеет разрешение по вертикали U пикселей. Координаты введены так, что самые верхние точки экрана имеют координату 0, а нижние — координату U–1.

Курсор мыши имеет высоту H пикселов. Расположением курсора считается самая верхняя точка курсора. Таким образом, если мы говорим, что он расположен, например, в точке с координатами 0 на экране, то его изображение расположено в точках с координатами от 0 до H–1. Курсор мыши всегда целиком помещается на экране, то есть допустимыми координатами для его расположения являются координаты от 0 до UH.>

Таблица, которую просматривает пользователь, имеет высоту L пикселов и состоит из N­–1 строки, и, следовательно, в ней N горизонтальных линий, которые имеют координаты X1, X2, …, XN. При этом 0=X1<X2<X3<…<XN=L–1.

В начальный момент времени таблица расположена так, что линия, имеющая координату 0 в таблице отображается в 0-й строке пикселов монитора. Далее при прокрутке таблица каждый раз сдвигается на T пикселов (то есть в 0-й строке монитора оказывается строка пикселов, имеющая в таблице координату T, координату 2T и т.д.). Так происходит до тех пор, пока на экране не окажется нижняя линия таблицы (которая имеет координату XN). После этого дальнейшая прокрутка не происходит (если изначально XN<U, то прокрутка вообще не происходит).

Входные данные

Во входном файле задано сначала разрешение монитора по вертикали U, затем высота курсора мыши H, затем шаг прокрутки T. Далее задана высота таблицы L. Далее задано количество разделительных линий в таблице N, и координаты X1, X2,…,XN, где расположены эти линии относительно начала таблицы.

Ограничения

  • 10U512
  • 1HU
  • 1TU
  • 2N200000
  • 0=X1<X2<…<XN=L–1109.
Выходные данные

В выходной файл выведите сначала координату, в которой нужно расположить курсор мыши, а затем количество пересечений курсора мыши с линиями таблицы. В случае, если существует несколько начальных положений курсора мыши, выведите любое из них.

Примеры
Входные данные
10 3 10 10
4
0 2 6 9
Выходные данные
3 0
Входные данные
10 3 10 20
14
0 1 2 3 4 5 6 7 8 9 10 12 16 19
Выходные данные
3 3

Страница: 1 2 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест