На лесистой луне Эндора находится, если верить Имперской Книге Рекордов, самая длинная ветка в галактике. На этой ветке длиной
L
метров сидит
N
дружелюбных хамелеонов. Каждый хамелеон ходит вдоль ветки со скоростью 1 м/с в одном из двух возможных направлений (налево или направо), а также имеет собственный цвет среди одного из
K
возможных.
Известно, что хамелеоны на Эндоры следуют древним законам, в соответствии с которыми любая прогулка вдоль ветки должна продолжаться до ее конца (после чего хамелеон спрыгивает с ветки), а в случае столкновения двух хамелеонов, они должны развернуться на 180 градусов и продолжить движение в противоположном направлении. Кроме того, при таком столкновении, если хамелеон, двигавшийся налево, имел цвет
a
, а хамелеон, двигавшийся направо - цвет
b
, то после разворота первый хамелеон изменит свой цвет на
b
, а второй хамелеон - на
(
a
+
b
)
modK
.
Вам даны изначальные цвета, положения и направления движения всех хамелеонов. Определите для каждого цвета, какое расстояние пройдут хамелеоны, находящиеся в этом цвете, до того момента, пока не спрыгнут с ветки.
Выходные данные
Выведите
K
строк,
i
-я строка должна содержать одно число - расстояние, пройденное хамелеонами цвета
i
.