---> 4 задач <---
Страница: 1 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Даны двухчашечные весы и набор гирек. На левую чашу весов положили взвешиваемый предмет весом K граммов. Можно ли привести весы в состояние равновесия, и если можно, то определите для каждой чаши весов, какие гирьки на нее для этого нужно положить. Имеющиеся гирьки разрешается класть на любую из чаш весов (каждая гирька имеется только в одном экземпляре, некоторые гирьки можно не использовать).

Входные данные

Вводится сначала K — вес предмета, который положили на левую чашу (1≤K≤50). Далее записано общее количество гирек N (1≤N≤10). Далее записано N различных натуральных чисел, не превышающих 50, — веса гирек.

Выходные данные

В первой строке выведите веса гирек, которые нужно поместить на левую чашу весов, во второй строке — гирьки, которые нужно поместить на правую чашу. Если на какую-то чашу ни одной гирьки помещать не нужно — выведите в этой строке число 0. Если с помощью данных гирек привести весы в равновесие нельзя, выведите одно число –1. Если вариантов несколько, выведите любой из них.

Примеры
Входные данные
5
2
3 5
Выходные данные
0
5
Входные данные
5
3
6 3 4
Выходные данные
4
3 6
Входные данные
5
1
2
Выходные данные
-1
ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
64 megabytes

Предприятие «Авто-2010» выпускает двигатели для известных во всём мире автомобилей. Двигатель состоит ровно из \(n\) деталей, пронумерованных от 1 до \(n\), при этом деталь с номером \(i\) изготавливается за \(p_i\) секунд. Специфика предприятия «Авто-2010» заключается в том, что там одновременно может изготавливаться лишь одна деталь двигателя. Для производства некоторых деталей необходимо иметь предварительно изготовленный набор других деталей.

Генеральный директор «Авто-2010» поставил перед предприятием амбициозную задачу — за наименьшее время изготовить деталь с номером 1, чтобы представить её на выставке.

Требуется написать программу, которая по заданным зависимостям порядка производства между деталями найдёт наименьшее время, за которое можно произвести деталь с номером 1.

Входные данные

Первая строка входного файла содержит число \(n\) (\(1\le n\le100000\)) — количество деталей двигателя. Вторая строка содержит \(n\) натуральных чисел \(p_1,p_2, \ldots,p_n\), определяющих время изготовления каждой детали в секундах. Время для изготовления каждой детали не превосходит \(10^9\) секунд.

Каждая из последующих \(n\) строк входного файла описывает характеристики производства деталей. Здесь \(i\)-я строка содержит число деталей \(k_i\), которые требуются для производства детали с номером \(i\), а также их номера. В \(i\)-й строке нет повторяющихся номеров деталей. Сумма всех чисел \(k_i\) не превосходит 200000.

Известно, что не существует циклических зависимостей в производстве деталей.

Выходные данные

В первой строке выходного файла должны содержаться два числа: минимальное время (в секундах), необходимое для скорейшего производства детали с номером 1 и число \(k\) деталей, которые необходимо для этого произвести. Во второй строке требуется вывести через пробел \(k\) чисел — номера деталей в том порядке, в котором следует их производить для скорейшего производства детали с номером 1.

Примеры
Входные данные
3
100 200 300
1 2
0
2 2 1
Выходные данные
300 2
2 1
Входные данные
2
2 3
1 2
0
Выходные данные
5 2
2 1
Входные данные
4
2 3 4 5
2 3 2
1 3
0
2 1 3
Выходные данные
9 3
3 2 1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
512 megabytes

На день рождения маленький Ипполит получил долгожданный подарок — набор дощечек с написанными на них буквами латинского алфавита. Теперь-то ему будет чем заняться долгими вечерами, тем более что мама обещала подарить ему в следующем году последовательность целых неотрицательных чисел, если он хорошо освоит этот набор. Ради такого богатства Ипполит готов на многое.

Прямо сейчас юный исследователь полностью поглощён изучением хорошести строк. Хорошестью строки называется количество позиций от 1 до L - 1 (где L — длина строки), таких, что следующая буква в строке является следующей по алфавиту. Например, хорошесть строки "abcdefghijklmnopqrstuvwxyz" равна 25, а строки "abdc" — только 1.

Ипполит размышляет над решением закономерно возникающей задачи: чему равна максимально возможная хорошесть строки, которую можно собрать, используя дощечки из данного набора? Вы-то и поможете ему с ней справиться.

Входные данные

Первая строка ввода содержит единственное целое число N — количество различных букв в наборе (1 ≤ N ≤ 26). Обратите внимание: в наборе всегда используются N первых букв латинского алфавита.

Следующие N строк содержат целые положительные числа ci — количество букв соответствующего типа (1 ≤ ci ≤ 109). Таким образом, первое число означает количество букв "a", второе число задаёт количество букв "b" и так далее.

Выходные данные

Выведите единственное целое число — максимально возможную хорошесть строки, которую можно собрать из имеющихся дощечек.

Примеры тестов

Входные данные
3
1
1
1
Выходные данные
2
Входные данные
2
3
4
Выходные данные
3

Примечание

В первом тесте имеется по одной дощечке с каждой из 3 различных букв. Ответ 2 достигается на строке "abc"

Система оценки

Каждый тест в данной задаче оценивается отдельно. Решение тестируется на основном наборе тестов только при прохождении всех тестов из условия. При этом тесты из условия не оцениваются.

Подзадача 1. Во всех тестах данной группы ci ≤ 100. Данная подзадача оценивается из 40 баллов.

Подзадача 2. Во всех тестах данной группы ci ≤ 1 000 000. Данная подзадача оценивается из 30 баллов.

Подзадача 3. Во всех тестах данной группы ci ≤ 109. Данная подзадача оценивается из 30 баллов.

ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
512 megabytes

Победитель студенческой олимпиады получил предложения о стажировке от двух университетов. При подготовке планов обучения он узнал рейтинг качества преподавания каждой дисциплины в этих университетах.

Программа обучения первого университета состоит из последовательности перечисленных в хронологическом порядке n различных дисциплин a1, a2, ..., an, имеющих рейтинги x1, x2, ..., xn соответственно. Программа обучения второго университета состоит из последовательности перечисленных в хронологическом порядке m различных дисциплин b1, b2, ..., bm, имеющих рейтинги y1, y2, ..., ym соответственно.

Студент имеет возможность составить план обучения в первом университете таким образом, чтобы изучить дисциплины на позициях учебной программы с la по ra включительно (1 ≤ la ≤ ra ≤ n), либо отказаться от стажировки в первом университете. Аналогично он может составить план обучения во втором университете таким образом, чтобы изучить дисциплины на позициях учебной программы с lb по rb включительно (1 ≤ lb ≤ rb ≤ m), либо отказаться от стажировки во втором университете.

Изучать одну и ту же дисциплину дважды в разных университетах не имеет смысла, поэтому все дисциплины в двух выбранных планах обучения должны быть различны.

Требуется написать программу, которая определит планы обучения студента таким образом, чтобы получить наибольшую возможную сумму рейтингов изучаемых дисциплин.

Входные данные

Первая строка входных данных содержит целые числа n и m — количество дисциплин в программах обучения первого и второго университетов (1 ≤ n, m ≤ 500 000).

Вторая строка входных данных содержит n целых чисел ai — дисциплины, входящие в программу обучения первого университета, перечисленные в хронологическом порядке (1 ≤ ai ≤ n + m).

Третья строка входных данных содержит n целых чисел xi — рейтинги дисциплин, входящих в программу обучения первого университета, перечисленные том же порядке, что и дисциплины ai (1 ≤ xi ≤ 109).

Четвёртая строка входных данных содержит m целых чисел bi — дисциплины, входящие в программу обучения второго университета, перечисленные в хронологическом порядке (1 ≤ bi ≤ n + m).

Пятая строка входных данных содержит m целых чисел yi — рейтинги дисциплин, входящих в программу обучения второго университета, перечисленные том же порядке, что и дисциплины bi (1 ≤ yi ≤ 109).

Выходные данные

Первая строка выходных данных должна содержать целое число r — наибольшую возможную сумму рейтингов дисциплин.

Вторая строка выходных данных должна содержать целые числа la, ra — позиции в учебной программе первой и последней дисциплин, входящих в план обучения в первом университете, либо «0 0», если студент отказался от стажировки в первом университете.

Третья строка выходных данных должна содержать целые числа lb, rb — позиции в учебной программе первой и последней дисциплин, входящих в план обучения во втором университете, либо «0 0», если студент отказался от стажировки во втором университете.

Если возможных правильных ответов несколько, разрешается вывести любой из них.

Примечание

В первом тесте из условия приведённые планы обучения в университетах приводят к суммарному рейтингу дисциплин (7 + 4 + 10 + 1 + 5) + (5 + 3 + 4) = 27 + 12 = 39. Если бы студент выбрал только вторую и третью дисциплины в первом университете и весь курс обучения во втором университете, суммарный рейтинг дисциплин был бы (7 + 4) + (3 + 5 + 3 + 4 + 12) = 11 + 27 = 38.

Во втором тесте из условия первая и третья дисциплины во втором университете имеют настолько высокий рейтинг по сравнению с соответствующими дисциплинами первого университета, что наиболее выгодный вариант — пройти целиком стажировку во втором университете и отказаться от стажировки в первом университете.

Примеры
Входные данные
7 5
3 1 4 8 6 9 2
2 7 4 10 1 5 3
9 2 11 3 8
3 5 3 4 12
Выходные данные
39
2 6
2 4
Входные данные
2 3
1 2
1 4
2 3 1
17 2 15
Выходные данные
34
0 0
1 3
Входные данные
3 3
4 2 1
10 1 2
5 4 2
1 2 9
Выходные данные
19
1 1
3 3

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест