Темы --> Информатика --> Структуры данных --> Линейные структуры
    Очередь(10 задач)
    Стек(35 задач)
    Дек(6 задач)
    Список(7 задач)
    Префиксные суммы(минимумы, ...)(2 задач)
---> 15 задач <---
Страница: 1 2 3 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Профиль Уральских гор задается ломаной (x1, y1), (x2, y2), …, (xN, yN), для координат вершин которой верны неравенства x1 < x2 < … < xN. Начальные и конечные точки профиля расположены на уровне моря (y1 = yN = 0).

На горном профиле заданы две различные точки A и B, между которыми требуется проложить дорогу. Эта дорога будет проходить по склонам гор и проектируемому горизонтальному мосту, длина которого не должна превышать L. Оба конца моста находятся на горном профиле. Дорога заходит на мост с одного конца и выходит с другого. Мост не может содержать точек, расположенных строго под ломаной (строительство тоннелей не предполагается).

Возможные примеры расположения моста

1

Невозможное расположение моста

2

Достоверно известно, что строительство такого моста в данной местности возможно, причем позволит сократить длину дороги из точки A в точку B. Требуется написать программу, которая определит такое расположение горизонтального моста, что длина дороги от точки A до точки B будет наименьшей.

Входные данные

Первая строка входных данных содержит два целых числа N и L — количество вершин ломаной (2 ≤ N ≤ 100 000) и максимальную длину моста (1 ≤ L ≤ 106) соответственно. Вторая строка  содержит координаты точки A, третья строка — координаты точки B. Точки A и B различны.

Последующие N строк содержат координаты вершин ломаной (x1, y1), (x2, y2), …, (xN, yN). Координаты вершин ломаной, а также точек A и B, задаются парой целых чисел, не превосходящих по абсолютному значению 106. Гарантируется, что x1 < x2 < … < xN и y1 = yN = 0, а также, что точки A и B принадлежат ломаной.

Выходные данные

В первой и второй строках выходных данных выведите координаты концов моста с точностью не менее 5 знаков после десятичной точки. В случае, когда решений несколько, выведите любое из них.

В примере в первой строке указана длина дороги от точки A до точки B с учётом построенного моста. Её не нужно выводить.

Примечание

Решения, корректно работающие при N ≤ 2000, будут оцениваться, исходя из 80 баллов.

Примеры
Входные данные
5 3
1 1
3 1
-1 0
0 2
2 0
4 2
5 0
Выходные данные
2.000000000
1.00000 1.00000
3.00000 1.00000
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Петя недавно узнал о существовании игры маджонг. Она ему показалась настолько интересной, что он играет в нее целыми днями. Для этой игры необходима прямоугольная доска размером m  n полей и набор фишек разных цветов. При этом фишек каждого цвета в наборе должно быть ровно две. В начале игры фишки располагаются на доске произвольным образом.

После этого за один ход разрешается снять пару фишек одного цвета, если они обе являются самыми правыми в своих горизонталях, либо самыми левыми в своих горизонталях, либо самыми нижними в своих вертикалях, либо самыми верхними в своих вертикалях. Если соответствующей пары фишек нет, то игра закончена.

Например, на рисунке показан пример позиции в игре, когда можно сделать два хода: снять две фишки четвертого цвета, поскольку они являются самыми левыми в своих горизонталях, либо снять две фишки первого цвета, поскольку они являются самыми верхними в своих вертикалях.

Цель игры состоит в том, чтобы сделать как можно больше ходов.

Задана начальная расстановка фишек на доске. Требуется найти самую длинную последовательность ходов, которую может сделать Петя из заданной позиции.

Входные данные

Первая строка входного файла содержит размеры доски: два целых числа \(m\) и \(n\) (1 ≤ \(m\), \(n\) ≤ 300, хотя бы одно из этих чисел четно). Далее следуют \(m\) строк по \(n\) чисел в каждой, \(j\)-е число в \(i\)-й из этих строк представляет собой номер цвета \(j\)-й слева фишки в \(i\)-й горизонтали. Цвета пронумерованы натуральными числами от 1 до \(n\)*\(m\) / 2. На доске ровно две фишки каждого цвета.

Выходные данные

В первой строке выходного файла выведите \(k\) — максимальное количество ходов, которое может сделать Петя из заданной начальной позиции. Во второй строке выходного файла выведите разделенные пробелами \(k\) чисел — номера цветов фишек в том порядке, в котором они должны сниматься с доски. Если возможных ответов несколько, выведите любой.

Примеры
Входные данные
1 2
1 1
Выходные данные
1
1 
Входные данные
4 1
1
2
2
1
Выходные данные
2
2 1 
ограничение по времени на тест
3.0 second;
ограничение по памяти на тест
64 megabytes

Дано N целых чисел. Требуется выбрать из них три таких числа, произведение которых максимально.

Дано N целых чисел. Требуется выбрать из них три таких числа, произведение которых максимально.

Входные данные

Во входном файле записано сначала число N — количество чисел в последовательности (3≤N≤106). Далее записана сама последовательность: N целых чисел, по модулю не превышающих 30000.

Выходные данные

В выходной файл выведите три искомых числа в любом порядке. Если существует несколько различных троек чисел, дающих максимальное произведение, то выведите любую из них.

Примеры
Входные данные
9
3 5 1 7 9 0 9 -3 10
Выходные данные
9 10 9
Входные данные
3
-5 -30000 -12
Выходные данные
-5 -30000 -12
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Заданы вещественные числа. Требуется определить, возможно ли упорядочить их с помощью стека.

Для транспортирования материалов из цеха А в цех В используется конвейер. Материалы упаковываются в одинаковые контейнеры и размещаются на ленте один за одним в порядке изготовления в цехе А. Каждый контейнер имеет степень срочности обработки в цехе В. Для упорядочивания контейнеров по степени срочности используют накопитель, который находится в конце конвейера перед входом в цех В. Накопитель работает пошагово, на каждом шаге возможны следующие действия:

накопитель перемещает первый контейнер из ленты в цех В;

накопитель перемещает первый контейнер из строки в склад (в складе каждый следующий контейнер помещается на предыдущий);

накопитель перемещает верхний контейнер из склада в цех В.

Напишите программу, которая по последовательности контейнеров определит, можно ли упорядочить их по степени срочности пользуясь описанным накопителем.

Входные данные

Входной файл в первой строке содержит количество тестов N. Далее следует N строк, каждый из которых описывает отдельный тест и содержит целое число K (1 K 10000) — количество контейнеров в последовательности и K действительных чисел — степеней срочности контейнеров в порядке их поступления из цеха А (меньшим числам соответствует большая степень срочности).

Выходные данные

Каждая строка выходного файла должна содержать ответ для одного теста. Необходимо вывести 1, если необходимое упорядочивание возможно, или 0 в противном случае.

Примеры
Входные данные
2
2 2.9 2.1
3 5.6 9.0 2.0
Выходные данные
1
0
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Сегодня на уроке физики рассказывали удивительные вещи. Придя домой, Витя решил проверить слова учителя о том, что если взять два одинаковых сосуда, соединенных тонкой трубкой на уровне основания, то уровень жидкости при любом ее количестве также будет одинаковым для обоих сосудов.

Способ убедиться в правильности утверждения Витя избрал довольно оригинальный. Он взял аквариум с основанием длиной N и шириной 1, очень высокими стенками, и поставил N –1 перегородку параллельно узкой боковой стенке аквариума, тем самым, разделив аквариум на N одинаковых отсеков. Каждая перегородка имеет ширину 1 и очень большую высоту. Толщиной перегородки можно пренебречь. В каждой из перегородок есть точечное отверстие на высоте Hi, диаметром которого также можно пренебречь. После всех этих приготовлений Витя медленно наливает в первый отсек (между стенкой и 1ой перегородкой) C литров воды. В часть аквариума размером 1x1x1 вмещается ровно один литр воды. Так как стенки и перегородки в аквариуме были очень высокими, то через край вода не переливалась. После установления стационарного состояния он замерил уровень жидкости в каждом из N сосудов.

Теперь он хочет убедиться, что его экспериментальные данные не опровергают законы, рассказанные на уроке. Он обратился к вам с просьбой выяснить, какой должна быть высота жидкости в каждом из сосудов с теоретической точки зрения.

Рассмотрим подробно случай N = 3. Пусть сначала H1 < H2. Как только жидкость в первом отсеке достигнет уровня первого отверстия, вода станет поступать во второй отсек до тех пор, пока уровни в обоих отсеках не сравняются (или уровень воды в первом отсеке окажется равным H1, тогда во втором отсеке он будет на уровне СH1). Далее уровень жидкости в первых двух частях будет увеличиваться равномерно (или не будет меняться). Как только вода достигнет второго отверстия, вся она будет поступать в третий отсек, опять же до тех пор, пока уровни жидкости во всех трех частях не сравняются или вода в первых двух отсеках достигнет уровня H2. После этого, если воды оказалось достаточно, весь аквариум будет заполняться равномерно.

Пусть теперь H1 > H2. Как только жидкость в первом отсеке достигнет уровня первого отверстия, вся вода станет поступать во второй отсек. Если после этого уровень во втором отсеке сравняется с уровнем второго отверстия, то вода станет выливаться в третий до тех пор, пока высоты жидкостей во втором и третьем отсеках не станут равными. Далее уровень воды в них будет равномерно увеличиваться, пока не достигнет первого отверстия. После этого весь аквариум будет заполняться равномерно.

Входные данные

В первой строке записаны целые N и C (1 ≤ N ≤ 100000, 0 ≤ C ≤ 2*109). В следующих N –1 строках содержится по одному целому числу Hi (0 ≤ Hi ≤ 2*109), обозначающему высоту отверстия в i-й перегородке.

Выходные данные

Выведите N чисел, каждое на новой строке, с точностью до шести знаков после десятичной точки —уровень жидкости в 1, 2, ..., N отсеке соответственно.

Частичные ограничения

Первая группа состоит из тестов, в которых N ≤ 100. Оценивается в 30 баллов.

Вторая группа состоит из тестов, в которых N ≤ 10000. Оценивается в 30 баллов.

Примеры
Входные данные
4 4
3
2
1
Выходные данные
3.00000000000000000000
1.00000000000000000000
0.00000000000000000000
0.00000000000000000000
Входные данные
4 10
1
2
3
Выходные данные
3.00000000000000000000
3.00000000000000000000
3.00000000000000000000
0.99999999999999911000

Страница: 1 2 3 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест