---> 2 задач <---
Источники --> Личные олимпиады --> Нижегородская олимпиада школьников
Страница: 1 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Пусть нам дано натуральное число \(N\). Рассмотрим множество различных целых чисел \(\{a_1, a_2, \dots, a_k\}\), где каждое число лежит в интервале от \(0\) до \(N-1\) включительно. Назовём такое множество свободным от сумм, если в этом множестве не найдётся таких трёх чисел, что сумма двух из них сравнима с третьим по модулю \(N\). Строго говоря, назовём множество свободным от сумм, если для каждой тройки (не обязательно различных) индексов \(x\), \(y\) и \(z\) (\(1\leq x,y,z\leq k\)) выполняется неравенство: \(\)(a_x+a_y) \bmod N \neq a_z\(\)

где \(p \bmod q\) — остаток от деления \(p\) на \(q\).

Например, при \(N=6\) множествами, свободными от сумм, не являются, например, \(\{0\}\) (т.к. \((0+0)\bmod 6=0\)), \(\{1,2\}\) (т.к. \((1+1) \bmod 6=2\)), \(\{3,4,5\}\) (т.к. \((4+5)\bmod 6=3\)), но множество \(\{1,3,5\}\) является свободным от сумм.

По заданному \(N\) определите, сколько существует множеств, свободных от сумм.

Входные данные

Во входном файле находится одно целое число \(N\). Гарантируется, что \(1\leq N\leq 35\).

Выходные данные

В выходной файл выведите одно число — ответ на задачу.

Примечание

Все множества, свободные от сумм, для \(N=6\) — это следующие: \(\{5\}\), \(\{4\}\), \(\{3\}\), \(\{3,5\}\), \(\{3,4\}\), \(\{2\}\), \(\{2,5\}\), \(\{2,3\}\), \(\{1\}\), \(\{1,5\}\), \(\{1,4\}\), \(\{1,3\}\), \(\{1,3,5\}\), \(\{\}\) (последнее множество — пустое, т.е. не содержащее ни одного элемента, с \(k=0\) — тоже считается свободным от сумм).

Примеры
Входные данные
2
Выходные данные
2
Входные данные
6
Выходные данные
14
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

У мальчика Васи есть \(N\) шоколадок (возможно, разного веса). Вася пригласил к себе в гости \(K\) своих друзей и хочет подарить им шоколадки. Чтобы никому из друзей не было обидно, Вася решил раздать шоколадки так, чтобы каждому другу досталось одно и то же количество шоколада (т.е. суммарный вес шоколадок, доставшихся каждому другу, должен быть одинаковым). Вася может раздать все свои шоколадки, может раздать лишь часть, но, поскольку он — очень гостеприимный мальчик, он не хочет оставлять друзей совсем без шоколада (т.е. сумма весов шоколадок, доставшихся каждому другу, должна быть строго положительной). Все шоколадки красиво упакованы, т.е. делить их на части нельзя.

Определите, сколько у Васи есть способов раздать шоколад своим друзьям. Два способа считайте различными тогда и только тогда, когда существует шоколадка, которая в одном способе досталась некоторому другу, а в другом — другому другу или вовсе не была отдана друзьям.

Входные данные

В первой строке входного файла находятся два натуральных числа \(N\) и \(K\) (\(1 \leq N \leq 15\), \(1 \leq K \leq 15\)) — количество шоколадок у Васи и количество друзей, которых Вася пригласил в гости. Во второй строке содержатся \(N\) натуральных чисел — веса шоколадок. Ни один из весов не превосходит \(1000\).

Выходные данные

Выведите в выходной файл одно число — количество способов раздать шоколадки друзьям.

Примечание

Во втором примере возможные распределения шоколадок следующие:

  1. Первому другу дать шоколадку номер 1, второму — номер 2;
  2. Первому другу дать шоколадку номер 2, второму — номер 1;
  3. Первому другу дать шоколадку номер 3, второму — шоколадки номер 1 и 2;
  4. Первому другу дать шоколадки номер 1 и 2, второму — номер 3.

Примеры
Входные данные
5 4
1 2 1 1 1

Выходные данные
24

Входные данные
3 2
1 1 2

Выходные данные
4


Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест