---> 3 задач <---
    2009(8 задач)
    2010(8 задач)
    2011(8 задач)
    2012(8 задач)
    2013(8 задач)
    2014(8 задач)
    2015(8 задач)
    2016(8 задач)
    2017(8 задач)
    Московская областная олимпиада(13 задач)
    Кировская открытая областная олимпиада(21 задач)
    Санкт-Петербург(3 задач)
Страница: 1 Отображать по:
ограничение по времени на тест
0.3 second;
ограничение по памяти на тест
64 megabytes

 Маленький мальчик делает бусы. У него есть много пронумерованных бусинок. Каждая бусинка имеет уникальный номер – целое число в диапазоне от 1 до N. Он выкладывает все бусинки на полу и соединяет бусинки между собой произвольным образом так, что замкнутых фигур не образуется. Каждая из бусинок при этом оказывается соединенной с какой-либо другой бусинкой.
Требуется определить, какое максимальное количество последовательно соединенных бусинок присутствует в полученной фигуре (на рисунке эти бусинки выделены темным цветом).

Формат входных данных

В первой строке – количество бусинок 1≤N≤2500. В последующих N-1 строках по два целых числа – номера, соединенных бусинок.

Формат выходных данных

Вывести одно число – искомое количество бусинок.

Пример

Входные данные

Выходные данные

7

4 5

6 7

7 4

7 2

1 3

4 1

5

ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Блохи сидят на клетках шахматного поля и ходят конем. Должны собраться в одной из клеток. Определить сумму длин кратчайших путей.

На клеточном поле, размером \(N\)x\(M\) (2 ≤ \(N\), \(M\) ≤ 250) сидит \(Q\) (0 ≤ \(Q\) ≤ 10000) блох в различных клетках. "Прием пищи" блохами возможен только в кормушке - одна из клеток поля, заранее известная. Блохи перемещаются по полю странным образом, а именно, прыжками, совпадающими с ходом обыкновенного шахматного коня. Длина пути каждой блохи до кормушки определяется как количество прыжков. Определить минимальное значение суммы длин путей блох до кормушки или, если собраться блохам у кормушки невозможно, то сообщить об этом. Сбор невозможен, если хотя бы одна из блох не может попасть к кормушке.

Входные данные

В первой строке входного файла находится 5 чисел, разделенных пробелом: \(N\), \(M\), \(S\), \(T\), \(Q\). \(N\), \(M\) - размеры доски (отсчет начинается с 1); \(S\), \(T\) - координаты клетки - кормушки (номер строки и столбца соответственно), \(Q\) - количество блох на доске. И далее \(Q\) строк по два числа - координаты каждой блохи.

Выходные данные

Содержит одно число - минимальное значение суммы длин путей или -1, если сбор невозможен.

Примеры
Входные данные
2 2 1 1 1
2 2
Выходные данные
-1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Отделу космических исследований поступило задание сфотографировать из космоса \(n\) объектов в заданной области. Область имеет форму квадрата размером \(50\times 50\) километров. Если разделить ее на квадраты размером \(1\times 1\) километр, то интересующие отдел объекты окажутся в центрах некоторых единичных квадратов.

Введем систему координат, направив ось OX с запада на восток и ось OY с юга на север. Тогда каждому единичному квадрату будут сопоставлены координаты в диапазоне от 1 до 50, как показано на рисунке ниже.

Для космической съемки используется специальный фотоаппарат высокого разрешения, установленный на космическом спутнике. Фотоаппарат может делать снимки квадратных участков земной поверхности размером \(k\times k\) километров. Исходно аппарат наведен на юго-западный угол заданной области, то есть, если сделать снимок, на нем будут видны единичные квадраты с координатами \(x\) и \(y\) от \(1\) до \(k\) километров.

С помощью специальных двигателей можно изменять орбиту спутника, что приводит к изменению участка съемки. За один день орбиту спутника можно изменить таким образом, что участок съемки сместится либо на один километр на запад, либо на один километр на восток, либо на один километр на север. Переместить участок съемки на юг невозможно. Непосредственно между перемещениями спутника можно сделать снимок, временем съемки можно пренебречь.

Руководство отдела заинтересовалось вопросом: за какое минимальное количество дней можно сделать снимки всех объектов заданной области.

Требуется написать программу, которая по заданному расположению объектов и размеру снимка \(k\) определит минимальное время, за которое можно сделать снимки всех объектов заданной области.

Входные данные

Первая строка входного файла содержит два целых числа: \(n\) и \(k\) (\(1 \le n \le 1000\), \(1 \le k \le 5\)).

Следующие \(n\) строк содержат по два целых числа: \(x_i\) и \(y_i\) — координаты объектов в заданной области (\(1 \le x_i, y_i \le 50\)).

Выходные данные

В выходном файле должно содержаться одно целое число: минимальное количество дней, которое требуется для получения снимков всех объектов в заданной области.

Примечание

В первом примере возможна следующая последовательность действий: сделать снимок, 9 раз сместиться на восток, сместиться на север, сделать снимок, 9 раз сместиться на запад, сместиться на север, сделать снимок, 9 раз сместиться на восток, сместиться на север, сделать снимок. Всего требуется 30 перемещений участка съемки.

Во втором примере объекты расположены там же, но размер снимка больше, поэтому можно действовать так: сделать снимок, сместиться на север, сделать снимок, 8 раз сместиться на восток, сделать снимок, сместиться на север, сделать снимок. Всего требуется лишь 10 перемещений участка съемки.

В третьем примере перемещать участок съемки не требуется, можно просто сделать снимок.

Четвертый пример соответствует приведенному выше рисунку.

Правильные решения для тестов, в которых \(k = 1\), будут оцениваться в 30 баллов.

Правильные решения для тестов, в которых \(k \gt 1\) и \(1 \lt n \le 15\), будут оцениваться так же в 30 баллов.

Примеры
Входные данные
4 1
1 1
10 2
1 3
10 4
Выходные данные
30
Входные данные
4 2
1 1
10 2
1 3
10 4
Выходные данные
10
Входные данные
1 1
1 1
Выходные данные
0
Входные данные
3 3
3 3
3 6
6 3
Выходные данные
7

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест