Женя получил письмо от Леши со словесным описанием схемы метро в его городе. Метро содержит одну кольцевую линию. Каждая из остальных линий пересекается с кольцевой не более, чем в двух местах, причем в точках пересечения организованы пересадочные станции. В одном месте кольцевую линию могут пересекать сразу несколько линий, имеющих общую пересадочную станцию.
Кроме этих пересадочных станций каждая из линий имеет не более одной пересадочной станции для перехода на другие, отличные от кольцевой, линии. На такой станции также может быть организована пересадка сразу на несколько линий.
Для каждой пересадочной станции Леша описал, какие линии на ней пересекаются, и указал порядок расположения пересадочных станций на кольцевой линии. Он утверждает, что все линии расположены на одной глубине и других пересечений, помимо пересадочных узлов, не имеют. Чтобы проверить это утверждение, Женя стал по словесному описанию рисовать схему метро, но у него не получилось.
Помогите Жене написать программу, которая будет проверять, действительно ли может существовать схема метро, соответствующая полученному описанию.
На рисунке приведена возможная схема метро, соответствующая второму примеру.
В первой строке вводится число k – количество линий метро в городе ( 1k
10). Все линии пронумерованы от 0 до k - 1, кольцевая линия имеет номер 0. Во второй строке записано число n – количество пересадочных станций. Каждая из следующих n строк описывает линии, пересекающиеся на соответствующей пересадочной станции, причем сначала следуют описания пересадочных станций, расположенных на кольцевой линии, в порядке их расположения на ней. Описание каждого узла начинается с количества пересекающихся в нем линий, затем следуют номера линий.
Выведите слово YES, если по описанию можно построить схему метро, и NO в противном случае.
4 6 2 0 1 2 0 2 2 0 3 2 0 1 2 0 2 2 0 3
NO
6 6 3 0 1 4 2 0 1 3 0 2 3 3 0 2 3 3 1 3 5 2 2 4
YES
Во Флатландии n городов, расположенных в различных точках плоскости. Известно, что никакие три города не лежат на одной прямой.
Правительство решило построить в стране сеть сверхскоростных шоссе. Сеть шоссе должна быть такой, чтобы из любого города можно было проехать в любой другой по построенным шоссе. А в целях экономии средств было решено, что путь, соединяющий любые два города, должен быть единственным. Каждое шоссе представляет собой отрезок, соединяющий некоторую пару городов.
Завод, выполняющий этот госзаказ, подготовил проект сети шоссе. Проект представляет собой описание n - 1 шоссе. Каждое шоссе задается городами, которые оно соединяет. В целях секретности вместо названий городов в проекте были использованы коды – числа от 1 до n.
Однако когда дело дошло до реализации проекта, выяснилось, что документ, в котором было указано соответствие номеров городам, утерян. Поскольку проект приурочен к пятисотлетию культурной столицы Флатландии, переделывать проект полностью оказалось невозможно. Поэтому было решено установить некоторое новое соответствие номеров городам.
При попытке это сделать разработчики проекта столкнулись со следующей проблемой. В соответствии с техническими нормами строительства, недопустимо, чтобы шоссе пересекались вне городов. Поэтому не любое сопоставление номеров городам допустимо. После пары бессонных ночей главный инженер завода решил поручить спасение проекта вам.
Ваша задача – таким образом сопоставить числам от 1 до n города, чтобы после реализации проекта шоссе не пересекались вне городов, которые они соединяют.
В первой строке вводится целое число n – количество городов во Флатландии ( 2n
1500).
Далее следует n описаний городов. Описание каждого города состоит из двух строк. Первая строка содержит название города – строку, состоящую из символов с ASCII-кодами от 33 до 127. Названия различных городов не совпадают. Длина названия города не превышает 60 символов. Вторая строка описания города содержит два целых числа x и y – координаты города. Координаты не превышают 104 по абсолютной величине.
Далее следуют n - 1 строк, которые описывают проект строительства сети шоссе в его текущем состоянии. Каждая строка содержит по два целых числа – номера городов, соединенных шоссе в проекте. Никакое шоссе в проекте не соединяет город сам с собой, никакие два города не соединены более, чем одним шоссе.
Выведите n строк, i-я из этих строк должна содержать название города, который следует сопоставить числу i в проекте. Если решений несколько, выведите любое.
Если решения не существует, выведите строку «No solution».
7 Moscow 2 2 St-Petersburg 0 4 Kirov 6 3 Saratov 5 0 Rybinsk 1 1 Petrozavodsk 2 6 Barnaul 10 -1 1 2 2 4 3 5 4 3 4 7 3 6
St-Petersburg Rybinsk Kirov Saratov Moscow Petrozavodsk Barnaul
У Пети в саду растет яблоня. Воодушевленный историей об Исааке Ньютоне, который, как известно, открыл закон всемирного тяготения после того, как ему на голову упало яблоко, Петя с целью повысить свою успеваемость по физике часто сидит под яблоней.
Однако, поскольку по физике у Пети твердая тройка, яблоки с его яблони падают следующим образом. В какой-то момент одно из яблок отрывается от ветки, на которой оно висит, и начинает падать строго вниз. Если в некоторый момент оно задевает другое яблоко, то то тоже отрывается от своей ветки и начинает падать вниз, при этом первое яблоко не меняет направление своего падения. Вообще, если любое падающее яблоко заденет другое яблоко на своем пути, то оно также начнет падать.
Таким образом, в любой момент каждое яблоко либо висит на ветке, либо падает строго вниз, причем все яблоки кроме первого, чтобы начать падать, должны сначала соприкоснуться с каким-либо другим падающим яблоком.
Выясните, какие яблоки упадут с Петиной яблони.
В первой строке вводится число \(N\) - количество яблок на Петиной яблоне (1 <= \(N\) <= 200). Следующие \(N\) строк содержат описания яблок. Будем считать все яблоки шарами. Каждое яблоко задается координатами своей самой верхней точки (той, где оно исходно прикреплено к дереву, длиной черенка пренебрежем) \(x_i\), \(y_i\) и \(z_i\) и радиусом \(r_i\) ( -10000 <= \(x_i\), \(y_i\), \(z_i\) <= 10000, 1 <= \(r_i\) <= 10000, все числа целые). Гарантируется, что изначально никакие яблоки не пересекаются (даже не соприкасаются). Ось OZ направлена вверх.
В первой строке выведите количество яблок, которые упадут с яблони, если начнет падать первое яблоко. В следующей строке выводите номера упавших яблок. Яблоки нумеруются, начиная с 1, в том порядке, в котором они заданы во входных данных.
4 0 0 10 4 5 0 3 1 -7 4 7 1 0 1 2 6
3 1 2 4
Дима обнаружил у папы на столе специальный чертежный прибор, похожий на циркуль - измеритель. Измеритель отличается от обычного циркуля тем, что в обеих его ножках находятся иголки (у обычного циркуля в одной ножке находится иголка, а в другой - грифель).
Дима взял клетчатый лист бумаги, установил между иглами измерителя некоторое расстояние, прочно зафиксировав его, и начал втыкать измеритель в лист бумаги. Каждый раз Дима втыкал в лист обе иглы измерителя, при этом он всегда делал это так, что дырочки получались в точках пересечениях линий, которыми лист разлинован на клетки. При этом в одну и ту же дырку Дима мог вставлять измеритель несколько раз.
Вечером папа нашел лист, с которым развлекался Дима, и решил выяснить, какое расстояние между иглами измерителя Дима мог установить. Все, что знает папа - координаты дырок, проделанных иглами измерителя. Помогите Папе решить поставленную задачу.
В первой строке вводится число \(n\) - количество дырок (2 <= \(n\) <= 1000). Следующие n строк содержат по два целых числа - координаты дырок. Координаты не превышают \(10^4\) по абсолютной величине.
В первой строке выведите \(k\) - количество различных расстояний, которые Дима мог установить между иглами измерителя. Следующие k строк должны содержать искомые расстояния, по одному вещественному числу в строке. Расстояния должны быть выведены в возрастающем порядке. Каждое число должно быть выведено с точностью не менее, чем 10-9.
Гарантируется, что существует по крайней мере одно расстояние, которое Дима мог установить между иглами измерителя.
4 0 0 1 1 1 0 0 1
2 1.0 1.4142135623730951
Недавно на кружке по программированию Петя узнал об обходе в глубину. Обход в глубину используется во многих алгоритмах на графах. Петя сразу же реализовал обход в глубину на своих любимых языках программирования Паскале и Си.
Паскаль | Си |
var a: array [1..maxn, 1..maxn] of boolean; visited: array [1..maxn] of boolean;
procedure dfs(v: integer); var i: integer; begin writeln(v); visited[v] := true; for i := 1 to n do begin if a[v][i] and not visited[i] then begin dfs(i); writeln(v); end; end; end;
procedure graph_dfs; var i: integer; begin for i := 1 to n do if not visited[i] then dfs(i); end; | int a[maxn + 1][maxn + 1]; int visited[maxn + 1];
void dfs(int v) { printf("%d\n", v); visited[v] = 1; for (int i = 1; i <= n; i++) { if ((a[v][i] != 0) && (visited[i] == 0)) { dfs(i); printf("%d\n", v); } } }
void graph_dfs() { for (int i = 1; i <= n; i++) { if (visited[i] == 0) { dfs(i); } } } |
Петина программа хранит граф с использованием матрицы смежности в массиве a (вершины графа пронумерованы от 1 до n). В массиве visited помечается, в каких вершинах обход в глубину уже побывал.
Петя запустил процедуру graph_dfs для некоторого неориентированного графа G с n вершинами и сохранил ее вывод. А вот сам граф потерялся. Теперь Пете интересно, какое максимальное количество ребер могло быть в графе G. Помогите ему выяснить это!
Первая строка входного файла содержит два целых числа: n и l количество вершин в графе и количество чисел в выведенной последовательности (1 ≤ n ≤ 300, 1 ≤ l ≤ 2n − 1). Следующие l строк по одному числу вывод Петиной программы. Гарантируется, что существует хотя бы один граф, запуск программы Пети на котором приводит к приведенному во входном файле выводу.
На первой строке выходного файла выведите одно число m максимальное возможное количество ребер в графе.
Следующие m строк должны содержать по два целых числа номера вершин, соединенных ребрами. В графе не должно быть петель и кратных ребер.
6 10 1 2 3 2 4 2 1 5 6 5
6 1 2 1 3 1 4 2 3 2 4 5 6