Темы
    Информатика(2656 задач)
---> 304 задач <---
Источники --> Личные олимпиады --> Всероссийская олимпиада школьников
    Муниципальный этап(80 задач)
    Окружная олимпиада(18 задач)
    Региональный этап(109 задач)
    Заключительный этап(97 задач)
Страница: << 13 14 15 16 17 18 19 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Как много открытий можно сделать, исследуя числа и составляющие их цифры!

Петя очень любит арифметику, и кроме домашних заданий он постоянно придумывает дополнительные задачи. Однажды он стал прибавлять к натуральным числам сумму составляющих их цифр. Петя обнаружил, что некоторые числа, например 20, не могут быть получены из других чисел в результате такого действия. Эти числа ему не понравились, и он назвал их некрасивыми.

Позже, когда Петя начал изучать информатику, те же исследования он стал проводить с натуральными числами в двоичной системе счисления. Например, двоичное число 1110­2 (в десятичной системе — 14) можно получить из числа 11002 (в десятичной системе — 12), прибавив к последнему сумму его цифр:

11002 + 102 = 11102.

Петя решил исследовать множество двоичных некрасивых чисел. Первые пять некрасивых чисел он нашел без труда: 1 = 12, 4 = 1002, 6 = 1102, 13 = 11012, 15 = 11112. Продолжить работу он собирается с помощью компьютера.

Требуется написать программу, которая определяет количество двоичных некрасивых чисел, не превосходящих заданного числа n.

Входные данные

В первой строке входного файла содержится число n, записанное в десятичной системе счисления (1   1018).

Выходные данные

В единственной строке выходного файла должно содержаться единственное число — количество двоичных некрасивых чисел, не превосходящих n.

Примечание

Решения, корректно работающие при n ≤ 106, будут оцениваться из 40 баллов.

Примеры
Входные данные
17
Выходные данные
5
Входные данные
18
Выходные данные
6
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В стране Флатландия решили построить легкоатлетический манеж с M одинаковыми прямолинейными беговыми дорожками. Они будут покрыты полосами из синтетического материала пружинкин. На складе имеются N полос пружинкина, длины которых равны 1, 2, …, N метров соответственно (i-я полоса имеет длину i метров).

Было решено использовать все полосы со склада, что определило длину дорожек манежа. Полосы пружинкина должны быть уложены без перекрытий и промежутков. Разрезать полосы на части нельзя. Полосы укладываются вдоль дорожек, ширина полосы пружинкина совпадает с шириной беговой дорожки.

Требуется написать программу, которая определяет, можно ли покрыть всем имеющимся материалом M дорожек, и если это возможно, то распределяет полосы пружинкина по дорожкам.

Входные данные

Во входном файле содержатся два целых числа, разделенных пробелом: M — количество дорожек и N — количество полос пружинкина (1 ≤ M ≤ 1000, 1 ≤ N ≤ 30000).

Выходные данные

В случае, если распределить имеющиеся полосы пружинкина на M дорожек одинаковой длины невозможно, то в выходной файл выведите слово «NO».

В противном случае, в первую строку выведите слово «YES». В последующих M строках дайте описание использованных полос для каждой дорожки в следующем формате: сначала целое число t — количество полос на дорожке, затем t целых чисел — длины полос, которые составят эту дорожку. Если решений несколько, можно вывести любое из них.


В задаче есть группа на первые 17 тестов и она оценивается в 20 баллов. затем идёт потестовая оценка по 2 балла за пройденный тест.

Примеры входных и выходных данных

Ввод

Вывод

2 4

YES

2 1 4

2 3 2

3 4

NO


ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Около прямолинейного забора, состоящего из N одинаковых бетонных плит, проводится конкурс граффити, в котором участвуют M граффити-художников. Художники должны разрисовать все плиты своими произведениями за наименьшее возможное время.

Плиты пронумерованы числами от 1 до N, граффити-художники имеют номера от 1 до M. Первоначально i-й граффити-художник находится около плиты с заданным номером pi. Каждому художнику требуется b минут на разрисовывание любой плиты. Каждую плиту должен разрисовать ровно один граффити-художник.

В начале работы, а также после разрисовывания любой плиты граффити-художник может перейти к любой неразрисованной плите. Время перемещения граффити-художника от любой плиты к соседней с ней одинаково и равно a минут. Таким образом, чтобы перейти от плиты с номером i к плите с номером j художнику требуется a×|ij| минут.

Требуется написать программу, которая поможет участникам конкурса разрисовать все плиты за минимальное возможное время.

Входные данные

В первой строке входного файла указаны числа N — количество плит в заборе и M — количество граффити-художников (1 ≤ N, M ≤ 100000). Во второй строке заданы два целых числа: a — количество минут, которое требуется для перехода от любой плиты к соседней, и b — количество минут, которое требуется граффити-художнику на разрисовывание одной плиты (1 ≤ a, b ≤ 106). В третьей строке заданы M чисел p1, p2, …, pM — начальные положения граффити-художников (1 ≤ piN).

Выходные данные

В первую строку выходного файла выведите минимальное количество минут, требуемых художникам для выполнения работы.

В последующих M строках выведите описание действий художников. В i-й из этих строк должно содержаться описание действий i-го художника: количество плит, которые должен разрисовать этот художник, и номера этих плит в очередности их разрисовывания. Если оптимальных решений несколько, можно вывести любое из них.

Примечание

Решения, корректно работающие при  2, будут оцениваться из 40 баллов.

Примеры
Входные данные
10 2
19 56
9 2
Выходные данные
375
5 10 9 8 7 6 
5 1 2 3 4 5 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В кабинете информатики есть старый стековый калькулятор. Он содержит K ячеек памяти, организованных в виде стека. Первая ячейка называется вершиной стека. На индикаторе калькулятора отображается содержимое вершины стека, если стек непуст.

Над стеком может выполняться операция проталкивания. Применение этой операции приводит к записи числа на вершину стека. Перед этим, если в стеке уже были числа, то каждое из них перемещается в ячейку с номером на единицу больше. Если в стеке уже находится K чисел, то выполнение операции проталкивания невозможно.

Калькулятор позволяет выполнять арифметические операции. Они применяются к числам, хранящимся во второй и первой ячейках стека. Результат операции записывается в первую ячейку стека, а число из второй ячейки удаляется. После этого, если третья ячейка непуста, то число из неё переписывается во вторую, если есть число в четвертой ячейке — оно переписывается в третью и так далее до последней занятой ячейки, которая становится пустой. Для выполнения арифметической операции в стеке должно быть хотя бы два числа. Например, при выполнении операций сложения или умножения, значения соответственно суммы или произведения чисел из первой и второй ячеек помещаются на вершину стека. Операция вычитания выполняется так: из содержимого второй ячейки стека вычитается содержимое первой ячейки.

Известно, что калькулятор неисправен. Из цифровых клавиш работает только клавиша «1». Нажатие этой клавиши приводит к проталкиванию в стек числа 1. Например, попытка набрать число 11, два раза нажав клавишу «1», приводит к тому, что в стек два раза проталкивается число 1. Из операций работают только сложение (клавиша «+»), умножение (клавиша «*») и вычитание (клавиша «-»). Если в результате вычитания получено отрицательное число, то калькулятор зависает.

Легко заметить, что на индикаторе возможно получить произвольное натуральное число. Например, чтобы получить число 3, необходимо дважды нажать клавишу «1», затем клавишу «+» (на индикаторе после этого появится число 2), затем один раз нажать клавишу «1» и один раз — клавишу «+». При K > 2 того же результата можно достичь иначе, трижды нажав клавишу «1», а затем два раза клавишу «+». Дополнительно используя операции умножения и вычитания, в некоторых случаях число N можно получить быстрее, чем сложив N единиц.

Требуется написать программу, которая определяет, каким образом можно получить на индикаторе калькулятора заданное число N, выполнив минимальное количество нажатий клавиш. Стек изначально пуст.

Входные данные

В единственной строке входного файла записаны два натуральных числа — N и K (1  N  109, 2  K  100).

Выходные данные

В первой строке выходного файла выведите минимальное количество нажатий клавиш, необходимых для получения числа N. Если число нажатий не превосходит 200, то дополнительно выведите во второй строке оптимальную последовательность нажатий, приводящих к появлению данного числа на индикаторе.

Последовательность необходимо выводить без пробелов. Клавиши обозначаются символами «1» — протолкнуть число 1 в стек, «+» — выполнить операцию сложения, «*» — выполнить операцию умножения, «-» — вычесть из значения второй ячейки стека значение первой ячейки.

В результате выполнения выведенной последовательности нажатий на индикаторе должно отображаться число N. Если оптимальных последовательностей нажатий несколько, разрешается выводить любую из них.

Примечания

Решения, корректно работающие при N ≤ 100 и K ≤ 10, будут оцениваться из 40 баллов.

Решения, корректно работающие при N ≤ 106 и K ≤ 100, будут оцениваться из 80 баллов.

Примеры
Входные данные
1 2
Выходные данные
1
1
Входные данные
9 3
Выходные данные
11
11+1+11+1+*
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

 Возьмем кубик и приклеим к его граням еще по такому же кубику. В результате получим фигуру, представленную на втором рисунке. К свободным граням полученной фигуры, приклеим еще кубики. На рисунке представлены «кубооктаэдры» степеней 0, 1, 2.

Кубооктаэдром степени N назовем фигуру, полученную в результате N-го доклеивания кубиков. Составить программу, подсчитывающую, количество кубиков для кубооктаэдра N-й степени.

Формат входных данных

На вход дается единственное число – степень кубооктаэдра 0 ≤ N ≤ 100000

Формат выходных данных

Вывести одно число – количество кубиков для кубооктаэдра степени N.

Примеры
Входные данные
1
Выходные данные
7
Входные данные
2
Выходные данные
25

Страница: << 13 14 15 16 17 18 19 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест