---> 151 задач <---
Источники --> Личные олимпиады --> Всероссийская олимпиада школьников
    Муниципальный этап(80 задач)
    Окружная олимпиада(18 задач)
    Региональный этап(109 задач)
    Заключительный этап(97 задач)
Страница: << 7 8 9 10 11 12 13 >> Отображать по:

В школу бальных танцев профессора Падеграса записались n учеников — мальчиков и девочек. Профессор построил их в один ряд, и хочет отобрать из них для первого занятия группу стоящих подряд учеников, в которой количество мальчиков и девочек одинаково. Сколько вариантов выбора есть у профессора?

Входные данные

В первой строке задано число n (1 ≤ n ≤ 106). Во второй строке задается описание построенного ряда из мальчиков и девочек — строка из n символов a и b (символ a соответствует девочке, а символ b — мальчику).

Выходные данные

В единственной строке должно содержаться единственное число — количество вариантов выбора требуемой группы.

Система оценки

Тесты в этой задаче разбиты на группы. Баллы начисляются только за группу целиком в том случае, когда пройдены все тесты группы, а также все тесты предыдущих групп.

  1. Тест 1. Тест из условия, оценивается в 0 баллов.
  2. Тесты 2–8. \(N \le 101\), оцениваются в 30 баллов.
  3. Тесты 9–14. \(N \le 6\,000\), оцениваются в 30 баллов.
  4. Тесты 15–20. Дополнительных ограничений нет, оцениваются в 40 баллов.

Примеры
Входные данные
8
aabbaabb
Выходные данные
10
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

В известном городе Санкт-Тверь решили построить новый микрорайон, представляющий в плане прямоугольную область. Границы микрорайона и его улицы по проекту ориентированы строго по сторонам света, причем улицы разбивают микрорайон на кварталы размером 1 км × 1 км.

Во время привязки исходного проекта к местности выяснилось, что некоторые кварталы по проекту микрорайона оказываются полностью или частично расположенными на топком болоте. Область, занимаемая болотом, связна и со всех сторон окружена подлежащими застройке кварталами микрорайона (область  связна, если из любой ее точки можно добраться в любую другую, не выходя за пределы области).

Для сохранения экологии местности и обеспечения безопасности жителей занятую болотом область решили оградить стеклянным забором. Забор должен проходить только по границам кварталов проектируемого микрорайона, отделяя болото, и, возможно, некоторые кварталы проекта, не занятые болотом, от остальной части микрорайона.

Для экономии строительных материалов забор должен иметь минимальную длину. Среди всех заборов минимальной длины нужно выбрать тот, для которого площадь части микрорайона, попадающей внутрь забора, минимальна.

Требуется написать программу, которая спроектирует забор с заданными выше свойствами.

Входные данные

Входные данные содержат описание многоугольника — границы области, состоящей только из кварталов c заболоченными участками. Стороны многоугольника параллельны осям координат.

В первой строке задано целое число n — количество вершин в многоугольнике (4 ≤ n ≤ 100 000, n четное). В каждой из следующих n строк заданы два целых числа — координаты очередной вершины при обходе этого многоугольника против часовой стрелки. Все числа не превосходят 109 по абсолютной величине. Никакие три последовательные вершины границы не лежат на одной прямой. Граница многоугольника не содержит самопересечений и самокасаний.

Выходные данные

Вывод программы на стандартный поток должен содержать описание многоугольника, определяющего искомый забор. Формат описания многоугольника тот же, что и для входных данных. Никакие три последовательные вершины этого многоугольника не должны лежать на одной прямой.

Примеры
Входные данные
8
0 0
9 0
9 9
6 9
6 3
3 3
3 6
0 6
Выходные данные
6
0 0
9 0
9 9
6 9
6 6
0 6

Андрей недавно начал изучать информатику. Одним из первых алгоритмов, который он изучил, был алгоритм Евклида для нахождения наибольшего общего делителя (НОД) двух чисел. Напомним, что наибольшим общим делителем двух чисел a и b называется наибольшее натуральное число x, такое, что и число a, и число b делится на него без остатка.

Алгоритм Евклида заключается в следующем:

1.Пусть a, b — числа, НОД которых надо найти.

2.Если b = 0, то число a — искомый НОД.

3.Если b > a, то необходимо поменять местами числа a и b.

4. Присвоить числу a значение a – b.

5.Вернуться к шагу 2.

Андрей достаточно быстро освоил алгоритм Евклида и вычислил с его помощью много наибольших общих делителей. Поняв, что надо дальше совершенствоваться, ему пришла идея решить новую задачу. Пусть заданы числа a, b, c и d. Требуется узнать, наступит ли в процессе реализации алгоритма Евклида для заданной пары чисел (a, b) такой момент, когда перед исполнением шага 2 число a будет равно c, а число b будет равно d.

Требуется написать программу, которая решает эту задачу.

Входные данные

Первая строка входных данных содержит количество наборов входных данных K (1 ≤ K ≤ 100). Далее идут описания этих наборов. Каждое описание состоит из двух строк. Первая из них содержит два целых числа: a, b (1 ≤ a, b ≤ 1018). Вторая строка – два целых числа: c, d (1 ≤ c, d ≤ 1018).

Все числа в строках разделены пробелом.

Выходные данные

Для каждого набора входных данных выведите слово «YES», если в процессе применения алгоритма Евклида к паре чисел (a, b) в какой-то момент получается пара (c, d). В противном случае выведите слово «NO».

Примеры
Входные данные
2
20 10
10 10
10 7
2 4
Выходные данные
YES
NO

На шахматный турнир в Нью-Васюках съехалось N игроков со всего света. Каждый игрок имеет свой шахматный рейтинг. Разумеется, на такой престижный турнир не допускались игроки с отрицательным рейтингом. В связи с разногласиями некоторых игроков по поводу регламента проведения матчей, после окончания турнира Председатель Шахматной Ассоциации решил собрать авторитетное сообщество шахматных игроков, для того чтобы внести изменения в регламент проведения будущих шахматных соревнований.

Авторитетность сообщества определяется суммарным рейтингом игроков, входящих в него. Но Председатель понимал, что нельзя приглашать на собрание всех игроков — иначе они увязнут в спорах, и никакого итогового решения принято не будет. Но чтобы соблюсти приличие, ему необходимо аргументировать свой выбор перед общественностью, а именно – это должно быть как можно более авторитетное (наибольшее) по рейтингу сообщество игроков. Кроме того, поскольку шахматисты — люди обидчивые, нельзя допустить и того, чтобы среди приглашенных игроков были проигравшие игроку, который приглашения не получил.

Требуется написать программу , помогающую Председателю выбрать наиболее авторитетное сообщество, удовлетворяющее всем требованиям суровой шахматной политической жизни. Гарантируется, что такое сообщество всегда существует.

Входные данные

Первая строка содержит два целых числа: N (0 < N ≤ 1000) — число игроков, и M (0 < M ≤ 106) — число сыгранных на турнире партий. Следующие N строк содержат по одному целому неотрицательному числу Ai (0 < Ai ≤ 106) — рейтинг i-го игрока. Затем идет M строк с результатами партий (ничейные партии не приводятся, одни и те же игроки могли играть между собой несколько раз). Каждая строка состоит из номеров двух игроков через пробел: это значит, что в данной партии игрок, номер которого идет в строке первым, победил второго игрока. Все входные данные корректны.

Выходные данные

В первой строке выведите количество игроков K (K < N) в наиболее авторитетном сообществе. В последующих K строках выведите номера игроков, входящих в это сообщество (в любом порядке, каждый игрок должен быть указан ровно один раз).

Примеры
Входные данные
2 1
1
1
1 2 
Выходные данные
1
Входные данные
6 6 
1
1
1
5 
6
1
6 1
1 2
2 3
3 4
4 5
3 4

Выходные данные
9

На роботизированном складе имеется N отсеков, в которые робот может размещать грузы. Отсек с номером i имеет вместимость ci. Груз с номером i имеет размер si, поступает на склад в момент времени ai и забирается со склада в момент времени di.

Когда груз с номером i поступает на склад, робот сначала пытается найти отсек, в котором достаточно свободного места для размещения этого груза. Свободное место в пустом отсеке совпадает с его вместимостью. Если в отсеке с вместимостью c находится несколько грузов с суммарным размером d, то свободное место в этом отсеке равно cd.

Если отсеков, в которых достаточно свободного места, несколько, то робот помещает груз в тот из них, в котором свободного места меньше. Если и таких отсеков несколько, то робот выбирает отсек с минимальным номером.

Если отсеков с достаточным количеством свободного места нет, робот пытается переместить грузы, уже расположенные в отсеках. Для этого он пытается найти такой отсек и такой груз в нем, что перемещение его в другой отсек обеспечивает достаточное количество свободного места для размещения поступившего груза. Если таких вариантов перемещения грузов несколько, то выбирается тот вариант, в котором потребуется перемещение груза с минимальным размером. Если и таких вариантов несколько, то выбирается тот вариант перемещения, при котором в отсеке, из которого перемещается груз, после перемещения свободное место будет минимально, а при прочих равных — тот, при котором в отсеке, в который осуществляется перемещение, свободное место после перемещения будет минимально. Если и после этого остается более одного варианта, то выбирается тот вариант, при котором номер перемещаемого груза минимален, и номер отсека, в который он перемещается, – также минимален. Если варианта с перемещением одного груза найти не удалось, то груз не принимается на склад.

Требуется написать программу, которая по списку грузов, поступающих для размещения на складе, выводит последовательность действий, выполняемых роботом.

Входные данные

Первая строка содержит два целых числа: N — количество отсеков, и M — количество грузов (1 ≤ N ≤ 10, 1 ≤ M ≤100). Вторая строка содержит N целых чисел ci, определяющих вместимости отсеков (1 ≤ ci ≤ 109). Последующие M строк описывают грузы: каждый груз описывается тремя целыми числами: своим размером si, временем поступления на склад ai и временем, когда его забирают со склада di (1 ≤ si ≤ 109, 1 ≤ ai < di ≤ 1000, все времена во входном файле различны, грузы упорядочены по возрастанию времени поступления на склад). Все числа в строках разделены пробелом.

Выходные данные

Выведите последовательность действий робота в том порядке, в котором они выполняются. Следуйте формату, приведенному в примере.

Возможны следующие сообщения:

put cargo X to cell Y — положить груз с номером X в отсек с номером Y;

move cargo X from cell Y to cell Z — переложить груз с номером X из отсека с номером Y в отсек с номером Z;

take cargo X from cell Y — достать груз с номером X из отсека с номером Y.

cargo X cannot be stored — если груз с номером X разместить невозможно.

Примеры
Входные данные
1 2
3
2 1 2
4 3 4

Выходные данные
put cargo 1 to cell 1
take cargo 1 from cell 1
cargo 2 cannot be stored

Страница: << 7 8 9 10 11 12 13 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест