---> 26 задач <---
Источники --> Личные олимпиады --> Всероссийская олимпиада школьников
    Муниципальный этап(80 задач)
    Окружная олимпиада(18 задач)
    Региональный этап(109 задач)
    Заключительный этап(97 задач)
Страница: << 1 2 3 4 5 6 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

На далекой планете Тау Кита есть непонятные нам обычаи. Например, таукитяне очень необычно для землян выбирают имена своим детям. Родители так выбирают имя ребенку, чтобы оно могло быть получено как удалением некоторого набора букв из имени отца, так и удалением некоторого набора букв из имени матери. Например, если отца зовут «abacaba», а мать — «bbccaa», то их ребенок может носить имена «a», «bba», «bcaa», но не может носить имена «aaa», «ab» или «bbc». Возможно, что имя ребенка совпадает с именем отца и/или матери, если оно может быть получено из имени другого родителя удалением нескольких (возможно, ни одной) букв.

Пусть отец по имени X и мать по имени Y выбирают имя своему новорожденному ребенку. Так как в таукитянских школах учеников часто вызывают к доске в лексикографическом порядке имен учеников, то есть в порядке следования имен в словаре, то они хотят выбрать своему ребенку такое имя, чтобы оно лексикографически следовало как можно позже.

  • Формально, строка S лексикографически больше строки T, если выполняется одно из двух условий: строка T получается из S удалением одной или более букв с конца строки S;
  • первые (i - 1) символов строк T и S не различаются, а буква в i-й позиции строки T следует в алфавите раньше буквы в i-й позиции строки S.

Требуется написать программу, которая по именам отца и матери находит лексикографически наибольшее имя для их ребенка.

Входные данные

Первая строка входного файла содержит X — имя отца. Вторая строка входного файла содержит Y — имя матери. Каждое имя состоит из строчных букв латинского алфавита, включает хотя бы одну букву и имеет длину не более \(10^5\) букв.

Выходные данные

Выходной файл должен содержать искомое лексикографически наибольшее из возможных имен ребенка. В случае, если подходящего имени для ребенка не существует, выходной файл должен быть пустым.

Система оценивания

Правильные решения для тестов, в которых имена содержат только буквы «a» и «b» и имеют длину не более 1000, будут оцениваться из 20 баллов.

Правильные решения для тестов, в которых имена содержат только буквы «a» и «b» и имеют длину не более \(10^5\), будут оцениваться из 40 баллов.

Правильные решения для тестов, в которых имена имеют длину не более 1000, будут оцениваться из 40 баллов.

Несмотря на выделение отдельных групп тестов, на окончательную проверку будут приниматься только решения, правильно работающие для всех тестов, приведенных в условии задачи.

Примеры
Входные данные
abcabca
abcda
Выходные данные
ca
Входные данные
ccba
accbbaa
Выходные данные
ccba
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

На олимпиаду по информатике пришло N участников. Известно, в каких школах учатся участники олимпиады. В компьютерном классе имеется N компьютеров, стоящих в линию вдоль стены. Вам необходимо рассадить участников олимпиады так, чтобы никакие два участника из одной школы не сидели рядом.

Формат входного файла

Программа получает на вход целое положительное число участников олимпиады \(N \le 1000\). Далее в N строках записаны номера школ, в которых учатся участники олимпиады. Номера школ — целые числа от 1 до 3000.

Формат выходного файла

Программа должна вывести N чисел — номера школ участников олимпиады в том порядке, в котором их необходимо рассадить в компьютерном классе. Выведенная последовательность номеров школ должна быть перестановкой данных номеров школ. В выведенном ответе не должно быть двух одинаковых номеров школ, идущих подряд.

Если задача не имеет решения, необходимо вывести одно число 0.

Числа можно выводить как в отдельных строках, так и в одной строке через пробел. Если есть несколько вариантов рассадки, то необходимо вывести любой из них (но только один).

Примеры
Входные данные
4
1005
1005
5
2005
Выходные данные
1005 5 1005 2005 
Входные данные
4
1005
1005
2005
1005
Выходные данные
0
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

При реализации проекта «Умная школа» было решено в каждый учебный класс выбранной для этого школы установить по кондиционеру нового поколения для автоматического охлаждения и вентиляции воздуха. По проекту в каждом классе должен быть установлен только один кондиционер и мощность кондиционера должна быть достаточной для размеров класса. Чем больше класс, тем мощнее должен быть кондиционер.

Все классы школы пронумерованы последовательно от 1 до \(n\). Известно, что для каждого класса с номером \(i\), требуется ровно один кондиционер, мощность которого больше или равна \(a_i\) ватт.

Администрации школы предоставили список из \(m\) различных моделей кондиционеров, которые можно закупить. Для каждой модели кондиционера известна его мощность и стоимость. Требуется написать программу, которая определит, за какую минимальную суммарную стоимость кондиционеров можно оснастить все классы школы.

Формат входного файла

Первая строка входного файла содержит одно целое число n (1 ≤ \(n\) ≤ 50 000) количество классов в школе.

Вторая строка содержит \(n\) целых чисел \(a_i\) (1 ≤ \(a_i\) ≤ 1000)- минимальная мощность кондиционера в ваттах, который можно установить в классе с номером \(i\).

Третья строка содержит одно целое число \(m\) (1 ≤ \(m\) ≤ 50 000) - количество предложенных моделей кондиционеров.

Далее, в каждой из \(m\) строк содержится пара целых чисел \(b_j\) и \(c_j\) (1 ≤ \(b_j\) ≤ 1000, 1 ≤ \(c_j\) ≤ 1000) мощность в ваттах \(j\)-й модели кондиционера и его цена в рублях соответственно.

Формат выходного файла

Выходной файл должен содержать одно число минимальную суммарную стоимость кондиционеров в рублях. Гарантируется, что хотя бы один корректный выбор кондиционеров существует, и во всех классах можно установить подходящий кондиционер.

Пояснения к примерам

В первом примере нужно купить один единственно возможный кондиционер за 1000 рублей.

Во втором примере оптимально будет установить в первом и втором классах кондиционеры четвертого типа, а в третьем классе – кондиционер третьего типа. Суммарная стоимость этих кондиционеров будет составлять 13 рублей (3 + 3 + 7).

Система оценивания

Частичные решения для \(n\), \(m\) ≤ 1000 будут оцениваться из 50 баллов.

Примеры
Входные данные
1
800
1
800 1000
Выходные данные
1000
Входные данные
3
1 2 3
4
1 10
1 5
10 7
2 3
Выходные данные
13
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
512 megabytes
Дано изображение дерева из \(n\) вершин на прямоугольной сетке. Каждое ребро — либо вертикальный, либо горизонтальный отрезок длины \(1\) Дано \(q\) запросов, каждый имеет вид "сколько компонент связности образуется при вырезании данного прямоугольного фрагмента"

Со стародавних времён в поморских деревнях рукодельницы вышивали жемчугом на прямоугольных полотенцах, состоящих из одинаковых клеток. Вышивка начиналась с пришивания жемчужины к полотенцу в центре одной из клеток. Чтобы пришить новую жемчужину, рукодельница делала стежок из клетки, уже содержащей жемчужину, в соседнюю с ней по горизонтали или вертикали свободную клетку. Новая жемчужина пришивалась в центре клетки на конце стежка. Этот процесс повторялся, пока не заканчивались жемчужины.

Одно из таких праздничных полотенец находится в музее. К сожалению, некоторые части узора были утеряны, но описание полотенца сохранилось. Дирекция музея планирует восстановить один из прямоугольных фрагментов полотенца, но не ещё не решила какой именно. Затраты на восстановление фрагмента зависят от количества связных частей узора, попавших на этот фрагмент. Часть узора считается связной, если от любой её жемчужины можно по стежкам перейти к любой другой её жемчужине, не выходя за границы фрагмента. Дирекция всегда относит любые две жемчужины, между которыми можно перейти по стежкам, к одной и той же связной части узора.

Требуется написать программу, вычисляющую количество связных частей узора для каждого из заданных фрагментов.

Входные данные

Первая строка входных данных содержит два целых числа a и b — размеры полотенца в клетках по горизонтали и вертикали.

Вторая строка содержит два числа \(n\) и \(q\) — количество жемчужин в узоре и количество фрагментов соответственно.

Следующие (\(n − 1\)) строк содержат описания стежков. Каждый стежок имеет один из следующих видов:

• \(h \times y\) означает, что клетки с координатами \((x, y)\) и \((x + 1, y)\) содержат жемчужины, соединённые горизонтальным стежком (\(1 \le x \le a − 1; 1 \le y \le b\));

• \(v \times y\) означает, что клетки с координатами \((x, y)\) и \((x, y + 1)\) содержат жемчужины, соединённые вертикальным стежком (\(1 \le x \le a; 1 \le y \le b − 1\)).

Так как неизвестно в каком порядке рукодельница наносила стежки, их описания следуют в произвольном порядке. При этом гарантируется, что узор был получен в результате процесса, описанного в условии задачи.

Следующие \(q\) строк описывают фрагменты. Каждое описание содержит четыре целых числа \(x_1\), \(y_1\), \(x_2\) и \(y_2\) — координаты левой нижней и правой верхней клетки фрагмента (\(1 \le x_1 \le x_2 \le a; 1 \le y_1 \le y_2 \le b\)).

Выходные данные

Выходные данные должны содержать \(q\) строк, где \(i\)-я строка содержит количество связных частей узора в \(i\)-м фрагменте.

Таблица системы оценивания

Замечание

Пояснение к тесту из условия

Примеры
Входные данные
4 3
8 4
v 1 1
h 1 1
h 2 1
v 2 1
v 2 2
h 1 3
h 3 1
1 1 4 3
3 2 4 3
3 1 3 1
1 2 3 3
Выходные данные
1
0
1
2
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Рассмотрим строку \(s\), состоящую из строчных букв латинского алфавита. Примером такой строки является, например, строка «abba».

Подстрокой строки \(s\) называется строка, составленная из одного или нескольких подряд идущих символов строки \(s\). Обозначим как \(W(s)\) множество, состоящее из всех возможных подстрок строки \(s\). При этом каждая подстрока входит в это множество не более одного раза, даже если она встречается в строке \(s\) несколько раз.

Например, \(W\)(«abba») = {«a», «b», «ab», «ba», «bb», «abb», «bba», «abba»}.

Подпоследовательностью строки \(s\) называется строка, которую можно получить из \(s\) удалением произвольного числа символов. Обозначим как \(Y\)(\(s\)) множество, состоящее из всех возможных подпоследовательностей строки \(s\). Аналогично \(W\)(\(s\)), каждая подпоследовательность строки \(s\) включается в \(Y\)(\(s\)) ровно один раз, даже если она может быть получена несколькими способами удаления символов из строки \(s\). Поскольку любая подстрока строки \(s\) является также ее подпоследовательностью, то множество \(Y\)(\(s\)) включает в себя \(W\)(\(s\)), но может содержать также и другие строки.

Например, \(Y\)(«abba») = \(W\)(«abba») ∪ {«aa», «aba»}. Знак ∪ обозначает объединение множеств.

Будем называть строку \(s\) странной, если для нее \(W\)(\(s\)) = \(Y\)(\(s\)). Так, строка «abba» не является странной, а, например, строка «abb» является, так как для нее \(W\)(«abb») = \(Y\)(«abb») = {«a», «b», «ab», «bb», «abb»}.

Будем называть странностью строки число ее различных странных подстрок. При вычислении странности подстрока считается один раз, даже если она встречается в строке \(s\) в качестве подстроки несколько раз. Так, для строки «abba» ее странность равна 7, любая ее подстрока, кроме всей строки, является странной.

Требуется написать программу, которая по заданной строке \(s\) определяет ее странность.

Входные данные

Входной файл содержит строку \(s\), состоящую из строчных букв латинского алфавита. Строка имеет длину от 1 до 200 000.

Выходные данные

Выходной файл должен содержать одно целое число: странность заданной во входном файле строки.

Описание подзадач и системы оценивания

В этой задаче четыре подзадачи. Баллы за каждую подзадачу начисляются только в случае, если все тесты для данной подзадачи успешно пройдены.

Подзадача 1 (29 баллов)

Строка \(s\) состоит только из букв «a» и «b». Длина строки \(s\) не превышает 50.

Подзадача 2 (12 баллов)

Длина строки \(s\) не превышает 50.

Подзадача 3 (25 баллов)

Длина строки \(s\) не превышает 1000.

Подзадача 4 (34 балла)

Длина строки \(s\) не превышает 200 000.

Примеры
Входные данные
abba
Выходные данные
7

Страница: << 1 2 3 4 5 6 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест