Окружная олимпиада(18 задач)
Региональный этап(109 задач)
Заключительный этап(97 задач)
В городе \(\pi\) недавно построили парк аттракционов, в котором есть павильон игровых автоматов. Каждый из автоматов рассчитан на одного человека. В программе Всероссийской олимпиады планируется посещение этого павильона.
Перед организаторами встала сложная задача — составить расписание игры участников олимпиады на автоматах таким образом, чтобы каждый из \(N\) участников олимпиады смог поиграть на каждом из автоматов, и при этом автобус, увозящий участников из парка олимпиады, смог бы отправиться к месту проживания как можно раньше.
Время перемещения участников между автоматами, а также между автобусом и павильоном считается равным нулю. Каждый из участников в любой момент времени может как играть на автомате, так и ждать своей очереди, например, гуляя по парку. Для каждого из \(M\) (\(M \leq N\)) автоматов известно время игры на нём \(t_i\) (\(1 \leq i \leq M\)). Прервать начатую игру на автомате невозможно. Автобус привозит всех участников олимпиады в парк одновременно в нулевой момент времени.
Требуется написать программу, которая по заданным числам \(N\), \(M\) и \(t_i\) определяет оптимальное расписание игры на автоматах для каждого из участников.
В первой строке входного файла содержатся два числа: \(N\) и \(M\) (\(1 \leq M \leq N \leq 100\)). Во второй строке заданы \(M\) целых чисел \(t_i\) (\(1 \leq t_i \leq 100\)), каждое из которых задаёт время игры на \(i\)-м автомате (\(1 \leq i \leq M\)). Числа в строке разделяются одиночными пробелами.
В первой строке необходимо вывести одно число — минимально возможное время отправления автобуса из парка аттракционов. Далее необходимо вывести \(N\) расписаний игр на автоматах, по одному для каждого из участников. Каждое расписание описывается в (\(M + 1\)) строках, первая из которых — пустая, а далее следуют \(M\) строк, описывающих автоматы в порядке их посещения этим участником. Посещение автомата описывается двумя целыми числами: номером автомата \(j\) (\(1 \leq j \leq M\)) и временем начала игры участника на этом автомате.
Данная задача содержит пять подзадач. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.
\(M = 1\), \(1 \leq N \leq 100\), \(t_1\) лежит в пределах от 1 до 100.
Все \(t_i\) равны 1, \(N = M\).
Все \(t_i\) равны 1, \(N > M\).
Числа \(t_i\) лежат в пределах от 1 до 100, \(N = M\).
Числа \(t_i\) лежат в пределах от 1 до 100, \(N > M\).
2 1 2
4 1 0 1 2
3 2 2 1
6 1 0 2 2 1 2 2 4 2 0 1 4
Рядом с офисом компании, в которой работает программист Джон, открылось новое кафе. Директор компании решил провести там новогодний ужин.
Меню праздничного новогоднего ужина в кафе состоит из k типов блюд. Для каждого типа блюда есть несколько вариантов на выбор. Всего есть a1 вариантов для первого типа блюда, a2 вариантов для второго типа блюда, и так далее, ak вариантов для k-го типа блюда. Всего, таким образом, предлагается a1×a2×…×ak различных заказов праздничного ужина.
Всего на ужине будут присутствовать m сотрудников компании. Каждый сотрудник должен заказать ровно один вариант блюда каждого типа на выбор. Таким образом, ужин каждого сотрудника будет состоять из k блюд. Для того чтобы ужин каждого сотрудника компании был уникален, администратор кафе придумал следующую схему. Сотрудники делают заказ ужина из меню один за другим. Каждый сотрудник выбирает k блюд, по одному варианту каждого типа. После выбора заказа из меню, сотрудник указывает один из типов блюд, и выбранный этим сотрудником вариант блюда этого типа больше не предлагается тем сотрудникам, которые делают заказ после него.
Каждый сотрудник компании запомнил, сколько возможных заказов ужина ему было предложено. Выяснилось, что директору, который выбирал первым, было предложено на выбор n1 = a1×a2×…×ak заказов. Тому, кто выбирал вторым, досталось лишь n2 < n1 заказов, поскольку один из вариантов одного из типов блюд уже не был доступен, и так далее. Джону, который выбирал последним, был предложен выбор лишь из nm заказов. Джон заинтересовался, а какое количество вариантов каждого типа блюд было на выбор у директора компании.
Требуется написать программу, которая по заданным числам k, m и n1, n2, …, nm выяснит, какое количество вариантов каждого типа блюд изначально предлагалось на выбор.
Первая строка входного файла содержит два целых числа k и m, разделенных ровно одним пробелом (1 ≤ k ≤ 20, 2 ≤ m ≤ 100). Вторая строка содержит m чисел: n1, n2, …, nm (для всех i от 1 до m выполняется неравенство 1 ≤ ni ≤ 109).
Выходной файл должен содержать k чисел: a1, a2, …, ak. Если возможных вариантов решения поставленной задачи несколько, требуется вывести любой. Соседние числа должны быть разделены ровно одним пробелом. Гарантируется, что хотя бы одно решение существует.
События в примере могли развиваться, например, следующим образом.
Исходно количество заказов ужина было равно 3×2×2=12. Директор, выбрав свой заказ, указал блюдо первого типа, поэтому второму сотруднику осталось лишь два варианта блюда первого типа. Количество заказов для него сократилось до 2×2×2 = 8. Он также указал на свое блюдо первого типа, и Джон уже мог выбирать лишь из 1×2×2 = 4 заказов ужина.
3 3 12 8 4
3 2 2
Мальчик Вася очень любит строить башни из кубиков. К сожалению, во время последней игры он увлёкся и потерял все кубики, кроме двух. Однако Вася не стал унывать и придумал новое развлечение. Заметив, что на каждой грани кубиков написано по одной цифре, он научился выкладывать двузначные числа из оставшихся игрушек. Вскоре мальчику стало интересно, сколько идущих подряд чисел, начиная с единицы, он сможет выложить с помощью двух кубиков. Помогите Васе найти ответ — такое максимальное число K, что все числа от 1 до K включительно можно получить, используя два оставшихся кубика.
Поскольку в игре используются оба кубика, числа, меньшие 10, Вася выкладывает с ведущими нулями (так, единицу можно получить, выбрав грань первого кубика с цифрой 0 и второго — с цифрой 1). Помните, что Вася умный мальчик: он знает, что перевернутый кубик с цифрой 6 позволяет получить цифру 9, и наоборот.
На вход подаются две строки, каждая из которых содержит 6 цифр, написанных на гранях соответствующего кубика.
Выведите максимально возможное число K. В случае, если даже число 1 получить невозможно, требуется вывести 0.
0 1 2 3 4 5
0 6 7 8 9 2
10
На олимпиаду по информатике пришло N участников. Известно, в каких школах учатся участники олимпиады. В компьютерном классе имеется N компьютеров, стоящих в линию вдоль стены. Вам необходимо рассадить участников олимпиады так, чтобы никакие два участника из одной школы не сидели рядом.
Программа получает на вход целое положительное число участников олимпиады \(N \le 1000\). Далее в N строках записаны номера школ, в которых учатся участники олимпиады. Номера школ — целые числа от 1 до 3000.
Программа должна вывести N чисел — номера школ участников олимпиады в том порядке, в котором их необходимо рассадить в компьютерном классе. Выведенная последовательность номеров школ должна быть перестановкой данных номеров школ. В выведенном ответе не должно быть двух одинаковых номеров школ, идущих подряд.
Если задача не имеет решения, необходимо вывести одно число 0.
Числа можно выводить как в отдельных строках, так и в одной строке через пробел. Если есть несколько вариантов рассадки, то необходимо вывести любой из них (но только один).
4 1005 1005 5 2005
1005 5 1005 2005
4 1005 1005 2005 1005
0