2010(8 задач)
2011(8 задач)
2012(8 задач)
2013(8 задач)
2014(8 задач)
2015(8 задач)
2016(8 задач)
2017(8 задач)
Московская областная олимпиада(13 задач)
Кировская открытая областная олимпиада(21 задач)
Санкт-Петербург(3 задач)
Петя достаточно давно занимается в математическом кружке, поэтому он уже успел не только правила выполнения простейших операций, но и такое достаточно сложное понятие как симметрия. Для того, чтобы получше изучить симметрию Петя решил начать с наиболее простых геометрических фигур – треугольников. Он скоро понял, что осевой симметрией обладают так называемые равнобедренные треугольники. Поэтому теперь Петя ищет везде такие треугольники.
Напомним, что треугольник называется равнобедренным, если его площадь положительна, и у него есть хотя бы две равные стороны.
Недавно Петя, зайдя в класс, увидел, что на доске нарисовано n точек. Разумеется, он сразу задумался, сколько существует троек из этих точек, которые являются вершинами равнобедренных треугольников.
Требуется написать программу, решающую указанную задачу.
Входной файл содержит целое число n (3 ≤ n ≤ 1500). Каждая из последующих строк содержит по два целых числа – xi и yi – координаты i-ой точки. Координаты точек не превосходят 109 по абсолютной величине. Среди заданных точек нет совпадающих.
В выходной файл выведите ответ на задачу.
Разбалловка для личной олимпиады
Тесты 1-2 — из условия. Оцениваются в 0 баллов.
Тесты 3-13 — n не превосходит 500. Группа тестов оценивается в 40 баллов.
Тесты 14-28 — дополнительных ограничений нет. Группа тестов оценивается в 60 балла (вместе с предыдущими группами — 100 баллов).
Баллы начисляются за прохождение всех тестов группы и всех тестов предыдущих групп. При выставлении баллов за отдельные тесты каждый тест (кроме тестов из условия) оценивается в 4 балла.
3 0 0 2 2 -2 2
1
4 0 0 1 1 1 0 0 1
4
С детства Максим был неплохим музыкантом и мастером на все руки. Недавно он самостоятельно сделал несложный перкуссионный музыкальный инструмент — треугольник. Ему нужно узнать, какова частота звука, издаваемого его инструментом.
У Максима есть профессиональный музыкальный тюнер, с помощью которого можно проигрывать ноту с заданной частотой. Максим действует следующим образом: он включает на тюнере ноты с разными частотами и для каждой ноты на слух определяет, ближе или дальше она к издаваемому треугольником звуку, чем предыдущая нота. Поскольку слух у Максима абсолютный, он определяет это всегда абсолютно верно.
Вам Максим показал запись, в которой приведена последовательность частот, выставляемых им на тюнере, и про каждую ноту, начиная со второй, записано — ближе или дальше она к звуку треугольника, чем предыдущая нота. Заранее известно, что частота звучания треугольника Максима составляет не менее 30 герц и не более 4000 герц.
Требуется написать программу, которая определяет, в каком интервале может находиться частота звучания треугольника.
Первая строка входного файла содержит целое число \(n\) — количество нот, которые воспроизводил Максим с помощью тюнера (\(2\le n\le1000\)). Последующие \(n\) строк содержат записи Максима, причём каждая строка содержит две компоненты: вещественное число \(f_i\) — частоту, выставленную на тюнере, в герцах (\(30\le f_i\le4000\)), и слово «closer» или слово «further» для каждой частоты, кроме первой.
Слово «closer» означает, что частота данной ноты ближе к частоте звучания треугольника, чем частота предыдущей ноты, что формально описывается соотношением: \(|f_i-f_{треуг.}|<|f_{i-1}-f_{треуг.}|\).
Слово «further» означает, что частота данной ноты дальше, чем предыдущая.
Если оказалось, что очередная нота так же близка к звуку треугольника, как и предыдущая нота, то Максим мог записать любое из двух указанных выше слов.
Гарантируется, что результаты, полученные Максимом, непротиворечивы.
В выходной файл необходимо вывести через пробел два вещественных числа — наименьшее и наибольшее возможное значение частоты звучания треугольника, изготовленного Максимом. Числа должны быть выведены с точностью не хуже \(10^{-6}\).
3 440 220 closer 300 further
30.0 260.0
4 554 880 further 440 closer 622 closer
531.0 660.0
Рассмотрим строку \(s\), состоящую из строчных букв латинского алфавита. Примером такой строки является, например, строка «abba».
Подстрокой строки \(s\) называется строка, составленная из одного или нескольких подряд идущих символов строки \(s\). Обозначим как \(W(s)\) множество, состоящее из всех возможных подстрок строки \(s\). При этом каждая подстрока входит в это множество не более одного раза, даже если она встречается в строке \(s\) несколько раз.
Например, \(W\)(«abba») = {«a», «b», «ab», «ba», «bb», «abb», «bba», «abba»}.
Подпоследовательностью строки \(s\) называется строка, которую можно получить из \(s\) удалением произвольного числа символов. Обозначим как \(Y\)(\(s\)) множество, состоящее из всех возможных подпоследовательностей строки \(s\). Аналогично \(W\)(\(s\)), каждая подпоследовательность строки \(s\) включается в \(Y\)(\(s\)) ровно один раз, даже если она может быть получена несколькими способами удаления символов из строки \(s\). Поскольку любая подстрока строки \(s\) является также ее подпоследовательностью, то множество \(Y\)(\(s\)) включает в себя \(W\)(\(s\)), но может содержать также и другие строки.
Например, \(Y\)(«abba») = \(W\)(«abba») ∪ {«aa», «aba»}. Знак ∪ обозначает объединение множеств.
Будем называть строку \(s\) странной, если для нее \(W\)(\(s\)) = \(Y\)(\(s\)). Так, строка «abba» не является странной, а, например, строка «abb» является, так как для нее \(W\)(«abb») = \(Y\)(«abb») = {«a», «b», «ab», «bb», «abb»}.
Будем называть странностью строки число ее различных странных подстрок. При вычислении странности подстрока считается один раз, даже если она встречается в строке \(s\) в качестве подстроки несколько раз. Так, для строки «abba» ее странность равна 7, любая ее подстрока, кроме всей строки, является странной.
Требуется написать программу, которая по заданной строке \(s\) определяет ее странность.
Входной файл содержит строку \(s\), состоящую из строчных букв латинского алфавита. Строка имеет длину от 1 до 200 000.
Выходной файл должен содержать одно целое число: странность заданной во входном файле строки.
В этой задаче четыре подзадачи. Баллы за каждую подзадачу начисляются только в случае, если все тесты для данной подзадачи успешно пройдены.
Строка \(s\) состоит только из букв «a» и «b». Длина строки \(s\) не превышает 50.
Длина строки \(s\) не превышает 50.
Длина строки \(s\) не превышает 1000.
Длина строки \(s\) не превышает 200 000.
abba
7