Страница: 1 2 3 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Слово называется палиндромом, если его первая буква совпадает с последней, вторая – с предпоследней и т.д. Например: "abba", "madam", "x".

Для заданного числа K слово называется почти палиндромом, если в нем можно изменить не более K любых букв так, чтобы получился палиндром. Например, при K = 2 слова "reactor", "kolobok", "madam" являются почти палиндромами (подчеркнуты буквы, заменой которых можно получить палиндром).

Подсловом данного слова являются все слова, получающиеся путем вычеркивания из данного нескольких (возможно, одной или нуля) первых букв и нескольких последних. Например, подсловами слова "cat" являются слова "c", "a", "t", "ca", "at" и само слово "cat" (а "ct" подсловом слова "cat" не является).

Требуется для данного числа K определить, сколько подслов данного слова S являются почти палиндромами.

Входные данные

В первой строке вводятся два натуральных числа:N (1 ≤ N ≤ 5 000) – длина слова и K (0 ≤ KN).

Во второй строке содержится слово S, состоящее из N строчных латинских букв.

Выходные данные

Требуется вывести одно число – количество подслов слова S, являющихся почти палиндромами (для данного K).

Примеры
Входные данные
5 1
abcde
Выходные данные
12
Входные данные
3 3
aaa
Выходные данные
6
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Новый учитель математики ввел в школе оригинальную систему оценки учеников – рейтинговую. На каждом уроке школьнику предлагалось выполнить задание, состоящее из нескольких задач. После этого учитель увеличивал рейтинг школьника на число, равное отношению количества решенных им сегодня задач к количеству задач, решенных им на прошлом занятии. Например, если сегодня ученик решил 5 задач, а вчера – две, то к его рейтингу сегодня прибавится = 2.5. Изначально рейтинг равен нулю; он начинает увеличиваться со второго дня. Если в один из дней какой-то ученик не решал ни одной задачи, то учитель объявлял его полной бездарностью и переводил в другой класс (с облегченным изучением математики), поэтому каждый день все ученики старались решить хотя бы одну задачу.

Школьники быстро обнаружили, что для получения наибольшего рейтинга им далеко не всегда нужно решать все задачи. Им известно, сколько задач учитель будет давать в каждый из дней. Помогите им определить, в какой день сколько задач следует решить, чтобы в итоге получить наибольший рейтинг.

Входные данные

В первой строке вводится одно натуральное число N (1 ≤ N ≤ 1 000) – количество уроков, которые провел в школе учитель до того, как его уволили.

В следующей строке содержатся числа a1,a2, …, aN– количество задач, которые учитель предложил школьникам на первом, втором, …, N-м уроках соответственно (1 ≤ ai ≤ 100).

Выходные данные

В первой строке выведите максимальный рейтинг, который может получить школьник за N дней, с точностью не менее 0.001.

Во второй строке выведите N чисел – количество задач, которые должен решить школьник в каждый из дней. Если вариантов несколько, выведите один любой из них.

Примеры
Входные данные
3
1 2 3
Выходные данные
4.00000
1 1 3 
Входные данные
3
1 10 8
Выходные данные
10.800000
1 10 8

Поле для детской игры представляет собой последовательность кружков, первый из которых является стартом, а последний – финишем. На некоторых из кружков указано действие, которое нужно совершить фишке, попавшей на этот кружок: передвинуть фишку на несколько кружков вперед или назад, или сделать еще один ход. Изначально фишки всехK игроков ставятся на старт. Затем они по очереди делают ходы, которые заключаются в следующем. Игрок получает очередное "случайное" число, используя генератор псевдослучайных чисел, описанный ниже, и передвигает свою фишку на столько кружков вперед, какое число он получил (если это число больше количества кружков до финиша, то игрок останавливается на финише). Если на кружке, куда он попал в результате своего хода, написано, что требуется совершить некоторое действие, то игрок совершает это действие. После этого он совершает действие, указанное на кружке, куда он попал в результате предыдущего действия и т. д. до тех пор, пока он не попадет на кружок, на котором не указано никакого действия.

Игра заканчивается, как только фишка одного из игроков достигнет финиша. Этот игрок и считается победителем. Требуется написать программу, которая по описанию поля и по данным параметрам генератора псевдослучайных чисел определит, кто выиграет в данной игре.

Генератор псевдослучайных чисел устроен следующим образом. Его параметрами являются натуральные числа a, b, c и x0. Генератор порождает последовательность натуральных чисел x1, x2, x3, … по следующему правилу: xn+1 равно остатку от деления (axn+ b) на c (при n = 0, 1, 2, …). Для игры используются числа x1, x2, x3, … именно в этом порядке (число x0 не используется). Все игроки используют общий датчик, то есть, если, например, первый игрок использовал число x1 и передал ход второму, то тот будет использовать число x2, а если ему потребуется повторить ход, то x3 и т. д.

Входные данные

В первой строке входных данных содержатся числа a, b, c, x0, описывающие генератор псевдослучайных чисел. Все числа целые неотрицательные и не превосходят 1000; c > 0. В следующей строке записаны числа K – количество игроков и L – количество кружков поля, включая старт и финиш (1 ≤ K, L ≤ 1000). В следующих L–2 строках записаны команды во втором, третьем, …, L–1-м кружке (в кружках старта и финиша никаких команд нет и при попадании туда ничего делать не нужно). Каждая команда записывается парой чисел.

Если первое число равно единице, то это означает, что нужно сделать дополнительный ход. При этом, если второе число равно T и T > 0, то нужно сделать ход на T кружков вперед, если T < 0 – то на |T| кружков назад, а если T = 0, то нужно снова воспользоваться датчиком псевдослучайных чисел и сделать указанное им количество шагов вперед.

Если первое число равно нулю, то ничего делать не нужно. (Если первое число равно нулю, то второе число также равно нулю.)

Другие значения первое число принимать не может.

Число T целое, и всегда таково, что при соответствующем ходе фишка не окажется за пределами доски (но может оказаться на клетке Старт или Финиш). Если же T = 0 и очередное "случайное" число больше, чем количество кружков до финиша, то фишка останавливается на финише.

Выходные данные

Выведите одно число – номер игрока-победителя. Гарантируется, что одна из фишек обязательно достигнет финиша, причем за время игры будет совершено не более миллиона перемещений (на "случайное" число или число, указанное в кружке).

Примеры
Входные данные
1 1 100 1
2 5
0 0
0 0
1 1
Выходные данные
2
3
Входные данные
1 1 100 1
2 5
0 0
1 0
1 1
Выходные данные
1
2
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

\(X\) мальчиков и \(Y\) девочек пошли в кинотеатр и купили билеты на подряд идущие места в одном ряду. Напишите программу, которая выдаст, как нужно сесть мальчикам и девочкам, чтобы рядом с каждым мальчиком сидела хотя бы одна девочка, а рядом с каждой девочкой — хотя бы один мальчик.

Входные данные

Вводятся два числа — \(X\) и \(Y\) (оба числа натуральные, не превосходящие 100).

Выходные данные

Выведите какую-нибудь строку, в которой будет ровно \(X\) символов B (обозначающих мальчиков) и \(Y\) символов \(G\) (обозначающих девочек), удовлетворяющую условию задачи. Пробелы между символами выводить не нужно. Если рассадить мальчиков и девочек согласно условию задачи невозможно, выведите строку NO SOLUTION.

Примеры
Входные данные
5 5
Выходные данные
BGBGBGBGBG
Входные данные
5 3
Выходные данные
BGBGBBGB
Входные данные
100 1
Выходные данные
NO SOLUTION
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Дана строка и словарь. Требуется разбить строку на слова из словаря.

У Васи на клавиатуре не работает клавиша пробел. Поэтому все тексты он теперь набирает слитно. Напишите программу, которая будет разделять набранный Васей текст на слова из данного словаря.

Формат входных данных

Сначала на вход программы поступает текст, введенный Васей – одна строка из не более чем 100 латинских строчных букв. В следующей строке входных данных задается значение N – количество слов в словаре (N – натуральное число, не превосходящее 2000). В следующих N строках записаны слова из словаря – по одному слову в  строке, каждое слово содержит не более 20 латинских строчных букв. Слова записаны в алфавитном порядке.

Формат выходных данных

Выведите Васин текст с пробелами между словами (пробел после последнего слова допустим). Если возможно несколько вариантов разбиения строки на слова, выведите  любой их них. Гарантируется, что хотя бы один способ разбиения строки на словарные слова существует.

Примеры
Входные данные
whatcanido
6
a
an
can
do
i
what
Выходные данные
what can i do 

Страница: 1 2 3 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест