Темы --> Информатика --> Алгоритмы --> Вычислительная геометрия
---> 55 задач <---
Страница: << 3 4 5 6 7 8 9 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
8 megabytes
X1,Y1), (X2,Y2), (X3,Y3). Найти длину L стороны квадрата минимальной площади, в который можно поместить этот треугольник так, чтобы все вершины треугольника находились внутри квадрата либо на его сторонах.

Составьте программу, которая по координатам вершин треугольника находит длину L стороны квадрата минимальной площади, в который можно поместить этот треугольник. L достаточно найти с точностью 10-4.

Входные данные

Файл содержит в одной строке действительные числа X1 Y1 X2 Y2 X3 Y3, разделенные пробелами, – координаты вершин треугольника (-10000 X1, Y1, X2, Y2, X3, Y3 10000).

Выходные данные

Файл должен содержать одно число - длину L стороны искомого квадрата.

Примеры
Входные данные
0.0 0.0 1.1 0.0 0.0 1.1
Выходные данные
1.100000000
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Для проведения олимпиады школьников по информатике требуется соединить компьютеры в сеть. Организаторы олимпиады разработали схему соединения компьютеров. В соответствии с этой схемой некоторые пары компьютеров должны быть соединены кабелем, и сигнал сможет дойти по кабелям от любого компьютера до любого другого, возможно, через другие компьютеры.

Некоторые компьютеры могут быть соединены циклически. Цикл называется простым, если каждый компьютер из этого цикла соединён ровно с двумя другими компьютерами этого цикла, и в этот цикл никакой кабель не входит более одного раза. Некоторые кабели могут не входить ни в какой цикл.

Известно, что в разработанной схеме никакой кабель не принадлежит двум простым циклам одновременно.

Организаторам олимпиады поручено разместить компьютеры в зале соревнований. При размещении должны выполняться следующие условия:

1.Компьютеры размещаются на плоскости в точках с целочисленными координатами.

2.Координаты компьютеров x и y лежат в диапазоне 0  x, y  106.

3.Никакие два компьютера не располагаются в одной точке.

4.Кабели являются отрезками прямых.

5.Кабели не пересекаются между собой и не проходят через точки размещения компьютеров, к которым они не подключены.

Требуется написать программу, выполняющую размещение компьютеров по заданному описанию схемы.

Входные данные

В первой строке входного файла содержатся числа N и M  количество компьютеров и количество кабелей в схеме (1  N  100 000, 0  M  200 000). В последующих M строках содержатся пары чисел, разделенных пробелами. Каждая такая пара описывает один кабель, числа представляют собой номера соединенных компьютеров. Компьютеры пронумерованы от 1 до N. Никакая пара не встречается дважды, и никакой кабель не соединяет компьютер с самим собой.

Выходные данные

Выходной файл должен содержать N строк. Строка с номером i должна содержать координаты i-го компьютера, разделенные пробелом. Сначала выводится координата x, затем y. Разрешается вывести любой вариант размещения компьютеров, при котором выполняются условия 1–5.

Примечания

Решения, корректно работающие при отсутствии циклов, будут оцениваться из 40 баллов.

Решения, корректно работающие при наличии только одного цикла, будут оцениваться из 60 баллов.

Пример входных и выходных данных

Ввод

Вывод

13 14

11 12

11 13

1 3

3 5

5 8

8 9

8 6

6 3

4 6

4 2

6 10

10 11

10 7

7 4

1 0

3 0

1 1

3 1

0 2

2 2

4 2

1 3

1 4

3 3

3 4

2 5

4 5


ограничение по времени на тест
0.1 second;
ограничение по памяти на тест
64 megabytes

На плоскости задано такое множество из N многоугольников, что выполняются следующие условия:

  • никакие два многоугольника не имеют общих точек;
  • для каждого i –го многоугольника существует Pi многоугольников, внутри которых он находится, и N-1-Pi многоугольников, которые находятся внутри его, 0 ≤PiN-1.

Напишите программу, которая для каждого многоугольника выдает количество многоугольников, внутри которых он находится.

Входные данные

Первая строка входного файла содержит целое число N — количество многоугольников, 3N100000. Следующие N строк файла описывают N многоугольников. (i+1)–ая строка файла описывает i–ый многоугольник. Первое целое число Ci — количество вершин многоугольника, 3Ci20. Последующие Ci пар чисел — координаты вершин многоугольника в порядке его обхода. Координаты вершин — целые числа, принадлежащие диапазону от -2 000 000 000 до 2 000 000 000.

Выходные данные

Единственная строка выходного файла должна содержать N чисел: i–ое число строки должно быть Piколичество многоугольников, внутри которых находится i–ый многоугольник.

Примеры
Входные данные
3
3 -2 1 8 9 12 1
3 7 5 6 3 7 4
4 4 3 7 7 9 3 1 2
Выходные данные
0 2 1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

 Территория Великой Треугольной Области (ВТО) представляет собой прямоугольный треугольник. Длины его катетов равны M и N государственных единиц длины (ГЕД). Правительство ВТО решило покрыть как можно большую часть территории области квадратными плитами размером 11 ГЕД. Плиты должны плотно прилегать друг к другу и к катетам ВТО. Разрезать плиты нельзя.

Согласно межгосударственным соглашениям, правительство ВТО не имеет права покрыть частью своей плиты чужую территорию. Производитель поставляет плиты только контейнерными партиями — по P плит. Правительство заказывает столько контейнеров, сколько необходимо для реализации проекта.

Заведующий центральным складом, узнав про проект, решил, что его интересует коли­чество плит, которые останутся на складе из последнего контейнера после покрытия территории ВТО.

Напишите программу, которая по длинам катетов ВТО и вместимости контейнера находит количество плит, которые останутся на складе после осуществления проекта.

Входные данные

Единственная строка входного файла содержит три целых числа: M, N (2MN≤2 000 000 000) и P (100P≤10 000).

Выходные данные

Единственная строка выходного файла должна содержать целое число — количество неиспользованных плит из последнего контейнера.

Примеры
Входные данные
4 3 100
Выходные данные
97
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

 Единственный способ попасть в Зал Круглых Столов – пройти через Колонный Коридор. Стены Коридора изображаются на карте прямыми линиями, которые параллельны оси OY системы координат. Вход в Коридор находится снизу, а выход из Коридора в Зал – сверху. В Коридоре есть цилиндрические (на карте круглые) Колонны одинакового радиуса R.

Напишите программу, которая по информации о размерах Коридора, и размещения Колонн определяет диаметр наибольшего из Круглых Столов, который можно пронести через такой Коридор, сохраняя поверхность Стола горизонтальной.

Входные данные

В первой строке входного файла заданы два числа XL и XRx-координаты левой и правой стен Коридора. Во второй строке находится целое число R (1≤R≤1 000 000) – радиус всех Колонн. В третей – целое число N (1≤N≤200), которое задает количество Колонн. Далее следуют N строк, в каждой из которых по два числа – x- и y-координаты центра соответствующей Колонны.

Все входные координаты – целые числа, которые по модулю не превосходят 1 000 000.

Выходные данные

Единственная строка выходного файла должна содержать одно число – искомый диаметр наибольшего Стола. Диаметр следует выводить с точностью 3 знака после десятичной точки (даже в случае, когда он окажется целым). Если нельзя пронести ни одного Стола, то ответ должен быть: 0.000

Точность 3 знака после точки, по обычным правилам округления, обозначает, что ответ, который выдается в выходной файл, должен отличаться от точного не более чем на 510-4 (т.е. на 0.0005). Например, если точный ответ 1.234567, то в файле должно находится число 1.235. Если точный ответ 5.0005, то необходимо округлять в большую сторону, т.е. в файл следует выдать 5.001

Примеры
Входные данные
0 90
3
4
10 10
70 10
50 50
10 90
Выходные данные
47.000

Страница: << 3 4 5 6 7 8 9 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест