Темы --> Информатика --> Алгоритмы --> Вычислительная геометрия --> Многоугольники. Выпуклые оболочки
---> 8 задач <---
Страница: << 1 2 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Компания, производящая оборудование для сотовой связи, обратилась к вам с просьбой написать программу, оценивающую качество организации сети. Одним из важных параметров является то, пересекаются ли зоны покрытия передатчиков, работающих на одинаковых частотах. Для простоты будем считать, что область покрытия каждого передатчика представляет собой многоугольник на плоскости (не обязательно выпуклый). Две области покрытия будем считать пересекающимися, если у них есть хотя бы одна общая точка (возможно, лежащая на границе одной или даже обеих областей). Ваша программа должна принимать на вход набор пар многоугольников, описывающих зоны покрытия передатчиков, и выводить про каждую пару информацию о том, пересекаются ли эти зоны.

Входные данные

На первой строке входного файла находится число \(K\) — количество тестов во входном файле. Далее идёт описание \(K\) тестов. Каждый тест задаётся описанием двух многоугольников, которые надо проверить на пересечение. Каждый многоугольник задаётся в следующем формате: сначала указывается одно число \(N_i\) — число вершин этого многоугольника, после чего идут \(N_i\) строк, каждая из которых содержит два разделённых пробелом числа \(x_{ij}\) и \(y_{ij}\) — координаты \(j\)-й вершины этого многоугольника. Вершины перечислены в порядке обхода многоугольника.

Число пар многоугольников в одном тесте \(1 \leq K \leq 10\), число вершин каждого многоугольника \(3 \leq N_i \leq 100\), координаты вершин — целые числа, \(|x_{ij}|, |y_{ij}| \leq 10\,000\).

Выходные данные

Для каждой пары многоугольников выведите в выходной файл на отдельной строке одно слово: “YES”, если многоугольники пересекаются, и “NO”, если нет.

Примеры
Входные данные
2
3
0 0
-1 0
0 -1
3
1 1
2 1
1 2
4
0 0
2 0
2 2
0 2
4
1 1
3 1
3 3
1 3
Выходные данные
NO
YES
ограничение по времени на тест
2.5 second;
ограничение по памяти на тест
512 megabytes

На улице уже неделю лил беспросветный дождь, а Игорь все сидел дома и играл в свои любимые игрушки. Но играть так долго в одно и то же ему быстро надоело, и он пошел к родителям выпрашивать новые. Родители быстро сдались, поэтому на следующий день вся семья собралась, и они поехали в магазин игрушек.

При входе в магазин у Игоря сразу разбежались глаза. Ему хотелось и гоночную машинку, и кораблик с белыми парусами, и саблю, которая так и манила его своим блестящим лезвием. Всего в магазине продается \(N\) новых игрушек, причем так получилось, что все они плоские и имеют форму выпуклых многоугольников (действительно, на что еще можно было надеяться в магазине «Сто тысяч и один выпуклый многоугольник для детей младшего школьного возраста»?). Но строгий отец сказал, что купит Игорю только две игрушки. Игорь сразу же начал перебирать в голове варианты, но их оказалось слишком много, а если быть более конкретным, то его интересовало ровно \(Q\) вариантов выбора пары игрушек.

Любознательный Игорь сразу же задумался о тонкостях упаковки игрушек. А именно, для каждой интересующей его пары игрушек \(i\), \(j\) он хочет проделать следующие операции.

Изначально каждая игрушка лежит в своей плоской прямоугольной коробке, которая плотно прилегает к игрушке. Далее Игорь ставит эти две коробки на стол рядом друг с другом (\(i\)-ю игрушку можно поставить как левее \(j\)-й, так и правее), убирает коробки, потом придвигает игрушки друг к другу, насколько это возможно, и кладет то, что получилось, обратно в коробку (обратите внимание на рисунок). Так как Игорь очень экономный, ему нужно знать размеры получившейся коробки. Повлиять на высоту итоговой коробки, двигая игрушки параллельно плоскости стола, нельзя, так что вам нужно помочь Игорю лишь с определением минимально возможной ширины получившейся коробки.

Обратите внимание, что игрушки можно лишь двигать параллельно плоскости стола, поворачивать их каким-либо образом запрещено. Таким образом, задачу можно считать двумерной: ось \(O_x\) совпадает с плоскостью стола, а ось \(O_y\), по которой измеряется высота игрушек и коробок, перпендикулярна плоскости стола. Стороны коробок параллельны соответствующим осям координат. Диковинных игрушек в магазине предостаточно, так что они могут «стоять» на столе, в том числе и балансируя на одной вершине самым непостижимым образом.

Для лучшего понимания условия ознакомьтесь с примером и иллюстрациями к нему.

Формат входного файла

В первой строке содержится натуральное число \(N\) (1 ≤ \(N\) ≤ 100 000) - количество игрушек. Далее следуют описания \(N\) выпуклых многоугольников в следующем формате: сначала идет натуральное число \(k_m\) (3 ≤ \(k_m\) ≤ 300 000) - количество вершин в \(m\)-м многоугольнике, затем идут \(k_m\) строк, в которых записаны пары целых чисел xm,s, ym,s, по модулю не превосходящих \(10^9\) - координаты вершин \(m\)-го многоугольника в порядке обхода против часовой стрелки, заданные в системе координат соответствующей ему коробки, которая стоит на столе (это означает, что ym,s >= 0, а также для всех игрушек существует вершина \(v_m\), у которой ym,\(v_m\) = 0). Сумма всех \(k_m\) (обозначим ее за \(S\)) не превосходит 300 000.

В следующей строке записано натуральное число \(Q\) (1 ≤ \(Q\) ≤ 500 000) - число вариантов. Следующие \(Q\) строк содержат пары натуральных чисел \(i_t\), \(j_t\) (1 ≤ \(i_t\) < \(j_t\) ≤ \(N\)) - номера сдвигаемых игрушек в очередном варианте.

Формат выходного файла

Выведите \(Q\) строк: для каждого варианта выбора пары одно вещественное число - необходимую ширину коробки. Ответ будет считаться правильным, если все числа посчитаны с абсолютной или относительной погрешностью не более \(10^{-9}\).

Комментарий

Верхний рисунок иллюстрирует исходное размещение игрушек в коробках, а нижние — варианты итогового расположения игрушек (оптимальный вариант слева).

Система оценивания

Тесты к этой задаче состоят из четырех групп.

0. Тест 1. Тест из условия, оценивается в ноль баллов.

1. Тесты 2–20. В тестах этой группы \(k_m\) ≤ 100, \(Q\) ≤ 1 000, \(S\) ≤ 10 000. Эта группа оценивается в 25 баллов. Баллы начисляются только при прохождении всех тестов группы.

2. Тесты 21–40. В тестах этой группы \(k_m\) ≤ 300, \(Q\) ≤ 50 000, \(S\) ≤ 100 000. Эта группа оценивается в 25 баллов. Баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае про- хождения всех тестов из первой группы.

3. Тесты 41–65. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 50 баллов. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой и второй групп. Тесты в этой группе оцениваются независимо.

Примеры
Входные данные
2
5
0 0
4 2
6 6
3 8
-2 4
5
0 0
2 0
8 4
5 11
3 12
1
1 2
Выходные данные
14.5000000000
Входные данные
2
3
0 0
0 3
-1 1
3
0 0
1 0
-20 20
1
1 2
Выходные данные
21.0000000000
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
512 megabytes

В заповеднике живут q тигров. Чтобы следить за положением тигров на территории заповедника, используются ошейники с радиомаяком. Ошейник у каждого тигра имеет радиомаяк с уникальным сигналом. Система обнаружения настраивается на приём сигнала радиомаяка от i-го тигра последовательно для i от 1 до q.

Для приёма сигнала на территории заповедника установлено n приёмников в точках с координатами (x1, y1), ..., (xn, yn). Система обнаружения позволяет сотруднику заповедника за один запрос выбрать любые m (3 ≤ m ≤ n) приёмников. Выбранные приёмники должны являться вершинами выпуклого многоугольника. Система определяет, находится ли радиомаяк i-го тигра внутри этого многоугольника.

Сотрудник заповедника должен локализовать положение каждого тигра. Положение i-го тигра считается локализованным, если удалось определить такое множество приёмников, являющихся вершинами выпуклого многоугольника, что внутри этого многоугольника находится тигр, но нет других приёмников.

Для того, чтобы локализовать положение каждого из тигров, сотруднику разрешается сделать не более k запросов.

После того как положение i-го тигра локализовано, система автоматически переходит к приёму сигналов от следующего тигра, пока положение всех q тигров не будет локализовано.

Гарантируется, что никакие три приёмника не лежат на одной прямой, и ни один тигр не находится на прямой, проходящей через два приёмника. Гарантируется, что существует хотя бы один выпуклый многоугольник с вершинами в приёмниках, внутри которого находится тигр.

Требуется написать программу, которая взаимодействует с программой жюри и локализует положение каждого тигра.

Протокол взаимодействия

Это интерактивная задача.

Сначала на вход подаётся информация об установленных в заповеднике приёмниках и количестве тигров.

Первая строка входных данных содержит целое число n — количество приёмников (3 ≤ n ≤ 5 000). Последующие n строк описывают координаты приёмников, j-я из этих строк содержит два целых числа xj и yj — координаты j-го приёмника ( - 109 ≤ xj, yj ≤ 109). Следующая строка содержит число целое число q — количество тигров (1 ≤ q ≤ 2000).

Для локализации положения тигров необходимо выполнять запросы к системе обнаружения, роль которой выполняет программа жюри.

Для каждого теста зафиксировано число k — максимальное количество запросов к системе обнаружения для локализации положения одного тигра. Гарантируется, что k запросов достаточно, чтобы решить задачу для соответствующих данных. Это число не сообщается программе-решению, но ограничения на него в различных подзадачах приведены в таблице системы оценивания. Если программа-решение делает более k запросов для определения местоположения одного из тигров, на этом тесте она получает в качестве результата тестирования «Неверный ответ».

Запрос к системе обнаружения начинается с символа «?», за которым следует целое число m — количество выбранных в запросе приёмников (3 ≤ m ≤ n), и m различных целых чисел pi — номера приёмников, перечисленные в порядке обхода многоугольника по или против часовой стрелки (1 ≤ pi ≤ n).

В ответ программа получает строку «Yes», если тигр находится внутри многоугольника, образованного приёмниками с номерами p1, ..., pm, и строку «No» в противном случае.

После того, как положение тигра локализовано, программа-решение должна вывести строку, начинающуюся с символа «!», за которым следует целое число m — количество выбранных приёмников (3 ≤ m ≤ n), и m различных целых чисел pi — номера приёмников, перечисленные в порядке обхода многоугольника по или против часовой стрелки (1 ≤ pi ≤ n). Эта строка означает, что внутри выпуклого многоугольника, образованного приёмниками с номерами p1, ..., pm, находится тигр и нет других приёмников.

Ответное сообщение от программы жюри отсутствует, и программа-решение должна немедленно приступать к поиску следующего тигра. Локализовав положение тигра с номером q, программа-решение должна завершить работу.

Тигры не перемещаются во время работы системы обнаружения. Координаты тигров в каждом тесте фиксированы и не меняются в процессе тестирования.

Если существует несколько правильных многоугольников, локализующих положение тигра, можно вывести любой из них.

На рисунке продемонстрирована процедура локализации положения каждого из тигров из приведенного ниже примера.

Примечание

Приведённые примеры иллюстрируют взаимодействие программы-решения с программой жюри «по шагам», для чего в них добавлены дополнительные пустые строки. При реальном тестировании лишние пустые строки вводиться не будут, выводить пустые строки также не требуется.


Страница: << 1 2 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест