Страница: << 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Магазины в рекламных целях часто устраивают распродажи. Так, например,одна из крупных сетей магазинов канцелярских товаров объявила два рекламных предложения: "купи \(N\) одинаковых товаров и получи еще один товар бесплатно"и "купи \(K\) товаров по цене \(K-1\) товара".

Для проведения олимпиады организаторам требуется распечатать условия для участников, на что уходит очень много бумаги. Каждая пачка стоит \(B\) рублей. Какое максимальное количество пачек бумаги можно приобрести на \(A\) рублей, правильно используя рекламные предложения?

Входные данные

Во входном файле записаны целые числа \(N\), \(K\), \(A\) и \(B\) (\(1\leq N\leq 100\), \(2\leq K\leq 100\), \(1\leq A \leq 10^9\), \(1\leq B \leq 10^9\)), разделенные пробелами.

Выходные данные

Выведите одно целое число - максимальное количество пачек бумаги, которое смогут купить организаторы олимпиады.

Примечание

В первом примере, дважды используя второе рекламное предложение, можно купить 8 пачек бумаги, заплатив за 6.

Во втором примере рекламными предложениями воспользоваться нельзя.

В третьем примере можно по одному разу воспользоваться каждым из двух рекламных предложений и на оставшийся рубль купить еще одну пачку бумаги.

Примеры
Входные данные
4 4 13 2
Выходные данные
8
Входные данные
3 4 8 3
Выходные данные
2
Входные данные
3 4 7 1
Выходные данные
9
Array

Петя часто ездит на олимпиады, и потому у него накопилось много футболок. Все футболки он делит на три типа: белые, чёрные и цветные. Каждое утро он выбирает футболку и носит её весь день. Петя любит ходить только в свежих футболках, и поэтому, если он уже надевал одну, то следующий раз он наденет её только после стирки. Его мама не стирает вместе футболки разных типов (иначе они полиняют). Кроме того, мама соблюдает инструкции по оптимальной загрузке стиральной машинки, и для стирки ей требуется ровно \(K\) футболок. При этом, конечно, стирать уже чистые футболки она не будет. Подразумевается, что мама стирает футболки сразу же, как ее об этом попросит Петя, и на следующий день он уже может их надевать.

Один из типов футболок Петя любит больше остальных, отчасти из-за того, что количество футболок этого типа позволяет носить только их. Но однажды Пете сказали, что он одевается не “по моде”, на что Петя обиделся и поспорил, что он сможет \(N\) дней одеваться модно. По моде, принятой в их школе, нельзя ходить два дня подряд в однотипной футболке и нельзя прийти в футболке того же типа ровно через неделю, после того как ты ее надел (например, два понедельника подряд). Школьная мода распространяется и на те дни, когда в школу ходить не надо.

Петя хочет знать, может ли он выиграть спор и, если может, то в каком порядке ему нужно надевать футболки в течении этих \(N\) дней. Он просит вас ему помочь.

Входные данные

Во входном файле содержатся пять целых чисел \(N, W, B. C\) и \(K\), разделенных пробелами — число дней, которые Петя должен носить футболки “по моде”, количество белых, черных и цветных футболок, имеющихся у него соответственно, и количество грязных однотипных футболок, которое согласится стирать мама. Гарантируется, что хотя бы одно из чисел \(W, B, C\) не меньше \(K\). \(1 \le N \le 1000, 1 \le K \le 1000, 0 \le W \le 1000, 0 \le B \le 1000, 0 \le C \le 1000\).

Выходные данные

В первой строке выходного файла выведите единственное слово YES или N0 — ответ на вопрос задачи. Если ответ YES, то во второй строке выведите \(N\) символов, где \(i\)-ый символ означает цвет футболки, которую Петя будет носить в \(i\)-ый день. Символ “W” означает белый цвет, “В” — черный, “С” — цветной.

Примечание

Система оценки

Тесты 1-3, из условия, оцениваются в 0 баллов.

1. В тестах этой группы среди чисел \(W, B\) и \(C\) хотя бы одно равно нулю. Эта группа оценивается в 50 баллов, при этом баллы начисляются только при прохождении всех тестов группы (при этом прохождения всех тестов из условия не требуется).

2. Баллы за тесты этой группы начисляются только при прохождении всех тестов 1 группы. Некоторые тесты этой группы объединяются в подгруппы, баллы за каждую подгруппу ставятся только при прохождении всех тестов подгруппы

Примеры
Входные данные
2 5 0 4 1
Выходные данные
YES
WC
Входные данные
4 3 4 5 3
Выходные данные
YES
CWCW
Входные данные
10 3 2 1 3
Выходные данные
NO

Юные физики Евгений и Родион очень любят музыку, кроме того Родион умеет исполнять любое произведение при помощи бутылок с водой. У них есть \(N\) бутылок бесконечной вместимости. В \(i\)-ой бутылке уже содержится \(a_i\) мл воды. Также у них есть бочонок с \(L\) мл воды, из которого можно переливать любой имеющийся объём воды в любую бутылку. Выливать воду из бутылок нельзя. После того как Евгений заканчивает все переливания, он больше не притрагивается к бутылкам, а Родион начинает играть мелодию.

Мелодия состоит из \(M\) нот \(b_1, b_2, \dots, b_M\), которые обязательно надо исполнять в заданном порядке. Ноту \(b_i\) Родион сможет сыграть, если найдется бутылка с \(b_i\) мл воды. Если очередную ноту он исполнить не может, то сильно огорчается и перестает играть. Евгений стремится наполнить бутылки таким образом, чтобы Родион играл как можно дольше. Помогите ребятам узнать, какое максимальное количество начальных нот данной мелодии сможет сыграть Родион при оптимальных действиях Евгения.

Входные данные

В первой строке входного файла содержатся три целых числа \(N\), \(M\), \(L\) - количество бутылок, длина мелодии и объем бочонка соответственно. Во второй строке через пробел расположены \(N\) чисел \(a_i\) (\(i = 1, 2, \dots N\)) - количество мл в \(i\)-ой бутылке. В третьей строке - \(M\) чисел \(b_i\) (\(i = 1, 2, \dots M\)) - последовательность нот в мелодии (каждая музыкальная нота обозначается своим числом, одинаковые ноты - одинаковыми числами). Все числа целые и неотрицательные.

Выходные данные

Выведите единственное число - максимальное количество начальных нот мелодии, которые можно сыграть, оптимально заполнив бутылки.

Примечания

Тесты состоят из четырёх групп.

  1. Тесты 1--3, из условия, оцениваются в 0 баллов.
  2. В тестах этой группы \(1 \le N \le 100\), \(1 \le M \le 100\), \(0 \le a_i \le 1\,000\), \(0 \le b_i \le 1\,000\), \(0 \le L \le 10^6\). Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.
  3. В тестах этой группы \(1 \le N \le 1\,000\), \(1 \le M \le 1\,000\), \(0 \le a_i \le 10^6\), \(0 \le b_i \le 10^6\), \(0 \le L \le 10^9\). Эта группа также оценивается в 30 баллов, они начисляются только при прохождении всех тестов группы.
  4. Offline-группа, \(1 \le N \le 10^5\), \(1 \le M \le 10^5\), \(0 \le a_i \le 10^6\), \(0 \le b_i \le 10^6\), \(0 \le L \le 10^9\). Баллы за тесты этой группы начисляются только при прохождении всех тестов 1-й и 2-й групп. Некоторые тесты этой группы объединяются в подгруппы, тесты за каждую подгруппу ставятся только при прохождении всех тестов подгруппы.
Примеры
Входные данные
6 8 179
4 9 23 15 43 7
3 10 14 7 3 8 7 3
Выходные данные
0
Входные данные
5 8 5
5 3 8 14 1
10 7 3 7 12 3 3 6
Выходные данные
4
Входные данные
2 2 4
6 13
8 10
Выходные данные
1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Для подготовки к чемпионату мира по футболу 2018 года создается школа олимпийского резерва. В нее нужно зачислить \(M\) юношей 1994−1996 годов рождения. По результатам тестирования каждому из \(N\) претендентов был выставлен определенный балл, характеризующий его мастерство. Все претенденты набрали различные баллы. В составе школы олимпийского резерва хотелось бы иметь \(A\) учащихся 1994 г.р., \(B\) – 1995 г.р. и \(C\) – 1996 г.р. (\(A + B + C = M\)). При этом минимальный балл зачисленного юноши 1994 г.р. должен быть больше, чем минимальный балл зачисленного 1995 г.р., а минимальный балл зачисленного 1995 г.р. должен быть больше, чем минимальный балл зачисленного 1996 г.р. Все претенденты, набравшие балл больше минимального балла для юношей своего года рождения, также должны быть зачислены.

В базе данных для каждого претендента записаны год его рождения и тестовый балл. Требуется определить, сколько нужно зачислить юношей каждого года рождения \(M_{94}\), \(M_{95}\) и \(M_{96}\) (\(M_{94} + M_{95} + M_{96} = M\)), чтобы значение величины \(F = |M_{94} − A| + |M_{95} − B| + |M_{96} − C|\) было минимально, все правила, касающиеся минимальных баллов зачисленных, были соблюдены, и должен быть зачислен хотя бы один юноша каждого требуемого года рождения.

Входные данные

В первой строке входного файла находится число \(K\) – количество наборов входных данных. Далее следуют описания каждого из наборов. В начале каждого набора расположены три натуральных числа \(A\), \(B\), \(C\). Во второй строке описания находится число \(N\) – количество претендентов (гарантируется, что \(N \geq A + B + C\)). В каждой из следующих \(N\) строк набора содержатся два натуральных числа – год рождения (число 1994, 1995 или 1996 соответственно) и тестовый балл очередного претендента.

Выходные данные

Ответ на каждый тестовый набор выводится в отдельной строке. Если хотя бы одно из требований выполнить невозможно, то в качестве ответа следует вывести только число −1. В противном случае соответствующая строка сначала должна содержать минимальное значение величины \(F\), а затем три числа \(M_{94}\), \(M_{95}\) и \(M_{96}\), на которых это минимальное значение достигается, удовлетворяющие всем требованиям отбора. Если искомых вариантов несколько, то разрешается выводить любой из них.

Комментарий

В первом примере на первом наборе ответ не существует, потому что нельзя пригласить хотя бы одного юношу 1995 г.р. Во втором наборе ответ существует и единственный, в третьем – нельзя выполнить правило относительно минимальных баллов.

Во втором примере правильным является также ответ 2 2 2 2.

Подзадачи и система оценки

Данная задача содержит три подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.

Подзадача 1 (25 баллов)

\(K = 1\); \(N \leq 100\); каждый претендент характеризуется своим баллом от 1 до \(N\).

Подзадача 2 (25 баллов)

Сумма значений \(N\) по всем тестовым наборам не превосходит 10 000, каждый претендент характеризуется своим баллом от 1 до \(10^9\).

Подзадача 3 (25 баллов)

Сумма значений \(N\) по всем тестовым наборам не превосходит 100 000, каждый претендент характеризуется своим баллом от 1 до \(N\).

Подзадача 4 (25 баллов)

Сумма значений \(N\) по всем тестовым наборам не превосходит 300 000, каждый претендент характеризуется своим баллом в диапазоне от 1 до \(10^9\).

Примеры
Входные данные
3
1 1 1
4
1994 3
1994 4
1996 1
1996 2
1 1 1
3
1995 2
1994 3
1996 1
1 1 1
3
1994 1
1995 2
1996 3
Выходные данные
-1
0 1 1 1
-1
Входные данные
1
2 3 1
7
1996 2
1994 7
1994 4
1996 1
1995 3
1994 5
1995 6
Выходные данные
2 3 2 1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

В городе \(\pi\) недавно построили парк аттракционов, в котором есть павильон игровых автоматов. Каждый из автоматов рассчитан на одного человека. В программе Всероссийской олимпиады планируется посещение этого павильона.

Перед организаторами встала сложная задача — составить расписание игры участников олимпиады на автоматах таким образом, чтобы каждый из \(N\) участников олимпиады смог поиграть на каждом из автоматов, и при этом автобус, увозящий участников из парка олимпиады, смог бы отправиться к месту проживания как можно раньше.

Время перемещения участников между автоматами, а также между автобусом и павильоном считается равным нулю. Каждый из участников в любой момент времени может как играть на автомате, так и ждать своей очереди, например, гуляя по парку. Для каждого из \(M\) (\(M \leq N\)) автоматов известно время игры на нём \(t_i\) (\(1 \leq i \leq M\)). Прервать начатую игру на автомате невозможно. Автобус привозит всех участников олимпиады в парк одновременно в нулевой момент времени.

Требуется написать программу, которая по заданным числам \(N\), \(M\) и \(t_i\) определяет оптимальное расписание игры на автоматах для каждого из участников.

Входные данные

В первой строке входного файла содержатся два числа: \(N\) и \(M\) (\(1 \leq M \leq N \leq 100\)). Во второй строке заданы \(M\) целых чисел \(t_i\) (\(1 \leq t_i \leq 100\)), каждое из которых задаёт время игры на \(i\)-м автомате (\(1 \leq i \leq M\)). Числа в строке разделяются одиночными пробелами.

Выходные данные

В первой строке необходимо вывести одно число — минимально возможное время отправления автобуса из парка аттракционов. Далее необходимо вывести \(N\) расписаний игр на автоматах, по одному для каждого из участников. Каждое расписание описывается в (\(M + 1\)) строках, первая из которых — пустая, а далее следуют \(M\) строк, описывающих автоматы в порядке их посещения этим участником. Посещение автомата описывается двумя целыми числами: номером автомата \(j\) (\(1 \leq j \leq M\)) и временем начала игры участника на этом автомате.

Примеры тестов

Подзадачи и система оценки

Данная задача содержит пять подзадач. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.

Подзадача 1 (20 баллов)

\(M = 1\), \(1 \leq N \leq 100\), \(t_1\) лежит в пределах от 1 до 100.

Подзадача 2 (20 баллов)

Все \(t_i\) равны 1, \(N = M\).

Подзадача 3 (20 баллов)

Все \(t_i\) равны 1, \(N > M\).

Подзадача 4 (20 баллов)

Числа \(t_i\) лежат в пределах от 1 до 100, \(N = M\).

Подзадача 5 (20 баллов)

Числа \(t_i\) лежат в пределах от 1 до 100, \(N > M\).

Примеры
Входные данные
2 1
2
Выходные данные
4

1 0

1 2
Входные данные
3 2
2 1
Выходные данные
6

1 0
2 2

1 2
2 4

2 0
1 4

Страница: << 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест