Страница: << 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Задана скобочная последовательность, содержащая круглые и квадратные скобки. На место квадратной скобки можно поставить произвольное количество соответствующих (открывающих или закрывающих) круглых (возможно ни одной). Требуется составить минимальную по длине правильную скобочную последовательность из круглых скобок.

Рассмотрим последовательность из открывающихся и закрывающихся круглых скобок. Последовательность называется правильной, если она может быть построена по следующим правилам:

1. пустая строка является правильной скобочной последовательностью; 2. если S – правильная скобочная последовательность, то (S) – тоже правильная скобочная последовательность. 3. если A и B – правильные скобочные последовательности, то AB – тоже правильная скобочная последовательность.

Примеры правильных скобочных последовательностей – «», «()», «((()))», «()()()», «((()())())(())». Неформально говоря, правильная скобочная последовательность – это последовательность скобок, которая может быть получена из некоторого арифметического выражения удалением из него всего, кроме скобок.

Рассмотрим последовательность скобок, содержащую как круглые, так и квадратные скобки. Пусть разрешается выполнять следующие операции: заменить открывающуюся квадратную скобку на произвольное число открывающихся круглых и заменить закрывающуюся квадратную скобку на произвольное количество закрывающихся круглых. Разрешается при замене создавать ноль скобок, то есть просто удалять соответствующую квадратную скобку.

Требуется с использованием указанных операций получить из заданной строки минимальную по длине правильную скобочную последовательность, состоящую только из круглых скобок.

Например, из строки [)())(]()] можно получить правильную скобочную последовательность (()())()().

Входные данные

Входной файл содержит одну строку, состоящую только из круглых и квадратных скобок. Длина строки не превышает 2000 символов.

Выходные данные

Выведите в выходной файл минимальную по длине правильную скобочную последовательность из круглых скобок, которую можно получить из заданной строки описанными операциями. Если решений несколько, выведите любое. Если из данной строки нельзя получить ни одной правильной скобочной последовательности, выведите в выходной файл слово «Impossible».

Примеры
Входные данные
[)())(]()]
Выходные данные
(()())(())
Входные данные
[)(][]
Выходные данные
()()
Входные данные
())
Выходные данные
Impossible
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
На круглом торте расположены свечки, заданные двумя координатами. Разрезы торта заданы уравнениями прямых. Требуется определить, есть ли на каком-либо кусочке торта более одной свечки.

Мише исполнилось \(n\) лет. Праздничный торт, испеченный по этому случаю, имеет форму круга радиуса \(r\) с центром в начале координат. На торте стоят \(n\) свечек. Мишина мама разделила торт на части, сделав \(m\) прямолинейных разрезов. Каждый гость взял один из получившихся кусков.

Миша хочет узнать, не досталось ли кому-нибудь из его гостей более одной свечки. Помогите ему это выяснить.

Входные данные

Первая строка входного файла содержит целые числа \(n\), \(m\) и \(r\) (1 ≤ \(n\) ≤ 10000, 0 ≤ \(m\) ≤ 1000, 1 ≤ \(r\) ≤ 2000).

Следующие n строк содержат пары целых чисел \(x_i\), \(y_i\) – координаты точек, где расположены свечки. Гарантируется, что эти точки лежат внутри круга, размерами свечек следует пренебречь. Никакие две свечки не совпадают.

Последние \(m\) строк содержат описание разрезов – тройки целых чисел \(a_i\), \(b_i\), \(c_i\). Такая тройка соответствует разрезу, который задается уравнением \(a_i\) \(x\) + \(b_i\) \(y\) + \(c_i\) = 0. Ни один разрез не проходит через свечку. Никакие два разреза не совпадают. Числа ai, bi, ci не превышают 10000 по модулю.

Выходные данные

Если одному из гостей досталось более одной свечки, выведите в выходной файл слово «YES», иначе выведите слово «NO».

Примеры
Входные данные
3 2 3
2 2
1 -1
-2 0
2 -1 0
0 1 -1
Выходные данные
NO
Входные данные
3 2 3
2 2
1 -1
-2 0
1 1 -1
0 1 -1
Выходные данные
YES
Входные данные
4 2 10
1 1
1 -1
-1 1
-1 -1
0 1 0
1 0 0
Выходные данные
NO
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Задан набор стран, продающих нефть. Для каждой страны известна стоимость барреля в долларах и в евро. Страна может продавать только за доллары или только за евро. По известному количеству имеющихся долларов и евро требуется определить максимальное количество баррелей нефти, которое можно купить.

Президент одной маленькой, но очень гордой страны вдруг узнал, что на дворе двадцать первый век, и на лошадях ездить уже не модно. Однако, как выяснилось, нефти в стране нет, а без бензина автомобили ездить не умеют. Так что придется закупать нефть в других странах.

Исследование внешнего рынка показало, что в мире есть \(n\) стран, экспортирующих нефть. При этом \(i\)-е государство продает баррель нефти либо за \(a_i\) долларов, либо за \(b_i\) евро.

У президента есть \(a\) долларов и \(b\) евро. Главный бухгалтер утверждает, что если попытаться купить нефть у одного государства и за доллары, и за евро, то бюрократия может надолго отложить покупку, чего президент, разумеется, не хочет.

Помогите президенту в таких непростых условиях узнать, сколько баррелей нефти он сможет купить.

Входные данные

На первой строке входного файла записаны три целых числа: \(n\), \(a\) и \(b\) (1 ≤ \(n\) ≤ 100, 0 ≤ \(a\), \(b\) ≤ 1000). В последующих \(n\) cтроках содержатся пары чисел \(a_i\), \(b_i\) (1 ≤ \(a_i\), \(b_i\) ≤ 1000).

Выходные данные

Выведите в выходной файл максимальное количество нефти, которое может купить президент. Выведите ответ не менее чем с двумя знаками после десятичной точки.

Примеры
Входные данные
3 2 5
6 4
3 5
8 7
Выходные данные
 1.91666666666667E+0000
Входные данные
4 3 2
2 4
3 2
4 1
3 3
Выходные данные
 3.50000000000000E+0000
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

На город Энск нападает флот инопланетян. Флот состоит из n космических кораблей, каждый из которых имеет форму равнобедренного прямоугольного треугольника.

Носом инопланетного корабля считается вершина, угол при которой прямой, а осью корабля называется высота, опущенная на гипотенузу.

Флот инопланетян прилетел с северо-востока, и застыл в таком положении, что все оси кораблей направлены строго на юго-запад.

Единственный способ нанести урон инопланетной армии – это пустить из некоторой точки поверхности Земли лазерный луч вертикально вверх. Пущенный так луч прожигает насквозь все вражеские корабли, через которые он проходит (даже те, которые он задевает по границе). Но этот выстрел повредит инопланетянам только в случае, если все n кораблей будут при этом поражены.

Военные власти города Энска решили нанести удар по вражеским войскам. Для этого решено поставить лазеры в одну из точек, над которыми находятся все n вражеских кораблей.

Помогите военным определить площадь территории, на которой можно поставить лазер.

Входные данные

В первой строке входного файла содержится целое число \(n\) – количество инопланетных кораблей (1 ≤ \(n\) ≤ 100).

В каждой из следующих n строк описывается положение очередного корабля. Описание состоит из трех целых чисел \(x_i\), \(y_i\) и \(s_i\), где \(x_i\) и \(y_i\) – координаты носа, а \(s_i\) – размер корабля. Поскольку корабль имеет форму равнобедренного прямоугольного треугольника, размером корабля военные решили называть длину катета.

Размеры кораблей – положительные числа, не превышающие 1 000. Координаты носов кораблей не превышают по абсолютной величине \(10^5\).

Выходные данные

В выходной файл выведите площадь территории, над которой находятся все инопланетные корабли. Выведите ответ с точностью до трех знаков после десятичной точки.

Примеры
Входные данные
3
2 4 6
4 2 7
3 3 5
Выходные данные
4.500
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Паук и паучиха плывут по озеру на двух веточках. Плавать они не умеют, поэтому смогут встретиться только тогда, когда веточки соприкоснутся.

Считая, что веточки имеют форму отрезков, и что они плывут с постоянными скоростями, определите, сколько осталось ждать встречи несчастным членистоногим.

Входные данные

Входной файл содержит 12 чисел: \(x_1\), \(y_1\), \(x_2\), \(y_2\), \(x_3\), \(y_3\), \(x_4\), \(y_4\), \(v_{1x}\), \(v_{1y}\), \(v_{2x}\), \(v_{2y}\). Координаты вершин первого отрезка: (\(x_1\), \(y_1\)) и (\(x_2\), \(y_2\)), координаты вершин второго отрезка: (\(x_3\), \(y_3\)) и (\(x_4\), \(y_4\)), скорость первого отрезка (\(v_{1x}\), \(v_{1y}\)), скорость второго отрезка (\(v_{2x}\), \(v_{2y}\)). Все числа целые и не превосходят по модулю \(10^4\). В начальный момент времени веточки не соприкасаются. Гарантируется, что веточки имеют ненулевую длину.

Выходные данные

Выведите в выходной файл время до ближайшего момента, когда веточки соприкоснутся, с ошибкой не более \(10^{-4}\). Если веточки не соприкоснутся никогда, выведите число -1.

Примеры
Входные данные
0 0 -1 3
4 4 7 7
3 0
0 -1
Выходные данные
1.6
Входные данные
0 0 -1 3
4 4 7 7
1 0
0 -3
Выходные данные
-1

Страница: << 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест