Страница: << 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Необходимо найти три наиболее удаленные вершины дерева. Удаленность считается как сумма расстояний между парами вершин.

В одном государстве имеется \(N\) городов. Некоторые города соединены дорогами, причем для любых двух городов \(A\) и \(B\) выполняется следующее свойство: существует ровно один способ попасть из города \(A\) в город \(B\) если можно перемещаться только по дорогам и не разрешается проезжать по одной и той же дороге более одного раза.

Недавно президента этой страны заинтересовал вопрос: какие три города являются наиболее удаленными друг от друга. А именно, назовем взаимной удаленностью друг от друга трех городов \(A\), \(B\) и \(C\) минимальное количество дорог, которое необходимо использовать, чтобы доехать от \(A\) до \(B\), затем от \(B\) до \(C\) и затем от \(C\) до \(A\) (при этом разрешается использовать одну и ту же дорогу в различных путешествиях).

Требуется найти три города, для которых взаимная удаленность друг от друга будет максимальной.

Например, для пяти городов, соединенных дорогами так, как это показано на рисунке 1, три наиболее удаленных друг от друга города - это города 1, 2 и 5 (взаимная удаленность равна 2 + 3 + 3 = 8), а для городов на рисунке 2 - это любые три города, выбранные из множества {1, 2, 4, 5} (удаленность 2 + 2 + 2 = 6).

Входные данные

В первой строке вводится число \(N\) - количество городов (3 <= \(N\) <= 1000). Следующие N строк содержат описания городов. Описание i-го города сначала содержит \(K_i\) - количество городов, с которыми он соединен дорогами (1 <= \(K_i\) < \(N\)), а затем \(K_i\) чисел - номера городов, с которыми он соединен. Гарантируется, что входные данные корректны - то есть если есть дорога из города A в город B, то есть и дорога из города B в город A, причем для всех пар городов выполняется свойство, указанное в условии задачи.

Выходные данные

Выведите три различных числа - номера трех наиболее удаленных друг от друга городов в произвольном порядке. Если решений несколько, выведите любое из них

Примеры
Входные данные
5
1 3
1 3
3 1 2 4
2 3 5
1 4
Выходные данные
5 2 1
Входные данные
5
1 3
1 3
4 1 2 4 5
1 3
1 3
Выходные данные
1 2 4
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Вызов функции осуществляется с одним числовым параметром. Функция прибавляет один к счетчику и вызывает заданный набор функций с параметром, на 1 меньшим. При параметре 0 функция прекращает работу. Требуется вывести значение счетчика.

В околоземном космическом пространстве накопилось много мусора, поэтому ученые сконструировали специальный аппарат - ловушку для космического мусора. Для того, чтобы хорошо собирать мусор, этот аппарат должен двигаться по достаточно сложной траектории, сжигая собранный по пути мусор. Ловушка может передвигаться в пространстве по 6 направлениям: на север (\(N\)), на юг (\(S\)), на запад (\(W\)), на восток (\(E\)), вверх (\(U\)) и вниз (\(D\)). Движением ловушки управляет процессор. Программа движения задается шестью правилами движения, которые соответствуют каждому из указанных направлений. Каждое такое правило представляет собой строку символов из множества {\(N\), \(S\), \(W\), \(E\), \(U\), \(D\)}.

Команда ловушки есть пара из символа направления и параметра - целого положительного числа \(M\). При исполнении такой команды ловушка в соответствии со своей программой выполняет следующее. Если параметр больше 1, то она перемещается на один метр в направлении, которое указано в команде, а затем последовательно выполняет команды, заданные правилом для данного направления, с параметром меньше на 1. Если же параметр равен 1, то просто перемещается на один метр в указанном направлении.

Пусть, например, заданы следующие правила:


Тогда при выполнении команды \(S\)(3) мусорщик выполнит следующие действия:

1) переместится на 1 метр в направлении \(S\)
2) выполнит последовательно команды \(N\)(2), \(U\)(2), \(S\)(2), \(D\)(2), \(D\)(2), \(U\)(2), \(S\)(2), \(E\)(2).
Если далее проанализировать действия мусорщика при выполнении команд из пункта 2, получим, что в целом он совершит следующие перемещения:

SNNUUSNUSDDUSEDWEDDWEDUUSNUSDDUSEEПо заданной команде определите, какое общее количество перемещений на один метр совершит ловушка при выполнении заданной команды. В приведенном примере это количество равно 34.

Входные данные

Первые шесть строк входных данных задают правила для команд с направлением \(N\), \(S\), \(W\), \(E\), \(U\) и \(D\) соответственно. Каждая строка содержит не более 100 символов (и может быть пустой). Следующая строка содержит команду ловушки: сначала символ из множества {\(N\), \(S\), \(W\), \(E\), \(U\), \(D\)}, затем пробел и параметр команды - целое положительное число, не превышающее 100.

Выходные данные

Выведите единственное число - количество перемещений, которое совершит ловушка. Гарантируется, что ответ не превышает \(10^9\).

Примеры
Входные данные
N
NUSDDUSE
UEWWD

U
WED
S 3
Выходные данные
34
#545
  
Источники: [ Командные олимпиады, ВКОШП, 2001, Задача A ]
Задано описание кирпичей, которое состоит из цвета, а также длины кирпича. Из кирпичей построена прямоугольная стена, причем каждый ряд имеет свой цвет. Требуется разделить кирпичи на 2 группы, чтобы из каждой группы можно было построить прямоугольную стену, содержащую ряды тех же цветов, что и исходная.

У Пети есть набор из \(N\) кирпичиков. Каждый кирпичик полностью окрашен в один из \(K\) цветов, \(i\)-й кирпичик имеет размер 1×1×\(L_i\). Петя знает, что он может построить из всех кирпичиков прямоугольную стену толщиной 1 и высотой \(K\), причем первый горизонтальный слой кирпичиков в стене будет первого цвета, второй - второго и т. д. Теперь Петя хочет узнать, может ли он из своего набора построить две прямоугольные стены, обладающие тем же свойством. Помогите ему выяснить это.

Входные данные

В первой строке входных данных задаются числа \(N\) и \(K\) (1 <= \(N\) <= 5000, 1 <= \(K\) <= 100). Следующие \(N\) строк содержат описание Петиных кирпичиков: сначала длина Li, затем номер цвета \(C_i\) (1 <= \(L_i\) <= 100, 1 <= \(C_i\) <= \(K\)). Известно, что у Пети не более 50 кирпичиков каждого цвета.

Выходные данные

Выведите в первой строке YES, если Петя сможет построить из всех своих кирпичиков две прямоугольные стены высоты \(K\), \(j\)-й слой кирпичиков в каждой из которых будет \(j\)-го цвета, и NO в противном случае. В случае положительного ответа, выведите во второй строке в произвольном порядке номера кирпичиков, из которых следует построить первую стену (кирпичики нумеруются в том порядке, в котором они заданы во входных данных, начиная с 1). Если решений несколько, можно выдать любое из них.

Примеры
Входные данные
3 1
1 1
2 1
3 1
Выходные данные
YES
1 
Входные данные
4 2
1 1
1 2
2 1
2 2

Выходные данные
YES
1 2 
Входные данные
2 2
1 1
1 2
Выходные данные
NO
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes
Задан одномерный массив "пузырьков", каждый из которых может быть одного из четырех цветов. Можно уничтожить группу подряд идущих пузырьков одинакового цвета и получить за это \(K^2\) очков (K - количество пузырьков). Требуется уничтожить все пузырьки и подсчитать максимальную сумму очков.

Сережа - большой любитель игр на сотовом телефоне. Недавно он скачал из интернета новую игру "Пузырьки 1D". Опишем правила игры.

Исходная позиция в игре представляет собой \(N\) пузырьков, расположенных вертикально в ряд. Каждый пузырек окрашен в один из четырех цветов - красный, зеленый, синий или желтый. Назовем группой несколько следующих подряд пузырьков одинакового цвета, непосредственно сверху и снизу от которых находятся либо пузырьки другого цвета, либо границы ряда пузырьков.

За один ход разрешается выбрать любую группу, состоящую хотя бы из двух пузырьков, и взорвать ее. За взрыв группы, содержащей K пузырьков, игрок получает K2 очков. После взрыва группы пузырьки, которые находились сверху, опускаются вниз.

Например, ниже на рисунке показана позиция, содержащая 10 пузырьков. В ней четыре группы, содержащие 3, 2, 4 и 1 пузырек, соответственно. Если взорвать группу, содержащую четыре пузырька, то игрок получит 16 очков, и верхние 5 пузырьков опустятся вниз. В получившейся позиции 6 пузырьков, и две группы по 3 пузырька в каждой.

По заданной начальной позиции в игре выясните, сможет ли Сережа уничтожить все пузырьки, и если да, то какое максимальное количество очков он сможет заработать.

Входные данные

На вход программы поступает одна строка, состоящая из букв "R", "G", "B и "Y", описывающая начальную позицию. Буквы задают цвета пузырьков в порядке просмотра сверху вниз ("R" означает красный пузырек, "G" – зеленый, "B" – синий, а "Y" – желтый). В заданной позиции не менее двух и не более 100 пузырьков.

Выходные данные

Выведите одно число – максимальное количество очков, которое сможет заработать Сережа. Если уничтожить все пузырьки невозможно, выведите 0.

Пояснения

В первом примере следует действовать следующим образом: сначала надо взорвать группу из четырех красных пузырьков, получив 16 очков. Затем надо взорвать в любом порядке получившиеся две группы по 3 пузырька, получив по 9 очков за каждую.

Примеры
Входные данные
RRRGGRRRRG
Выходные данные
34
Входные данные
RB
Выходные данные
0
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Петя - большой любитель математических головоломок. Недавно он прочитал в одном популярном журнале о новой головоломке. Он пытался ее решить несколько дней, но это ему так и не удалось. Помогите Пете справиться с неподдающейся задачей.

В ряд выписаны n чисел. Требуется поставить между каждой парой соседних чисел один из знаков "+" или "×" таким образом, чтобы значение получившегося выражения было как можно больше. Использовать скобки не разрешается.

Например, для последовательности чисел 1, 2, 3, 1, 2, 3 оптимально расставить знаки следующим образом: 1 + 2 × 3 × 1 × 2 × 3. Значение выражения в этом случае равно 37.

Входные данные

В первой строке вводится число \(n\) (2 <= \(n\) <= 200000). Вторая строка содержит \(n\) целых чисел - числа, между которыми следует расставить знаки. Все числа находятся в диапазоне от 0 до \(10^9\).

Выходные данные

Выведите оптимальное выражение. В качестве знака "×" выводите символ "*" (звездочку). Если оптимальных решений несколько, выведите любое из них.

Примеры
Входные данные
6
1 2 3 1 2 3
Выходные данные
1+2*3*1*2*3

Страница: << 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест