Рассмотрим две строки \(α\) и \(β\). Их конкатенацией называется строка, получающаяся в результате приписывания к строке \(α\) строки \(β\). Эта строка обозначается \(αβ\). Например, конкатенацией строк `ab' и `ac' будет строка `abac'. Очевидно, что это определение естественным образом распространяется на конкатенацию произвольного количества строк. Так, конкатенацией нуля строк будет пустая строка, а конкатенацией одной строки будет она сама.
Рассмотрим некоторое множество \(W\), состоящее из строк. Назовём его замыканием множество \(W\)*, состоящее из тех и только тех строк, которые можно получить в результате конкатенации нуля и более строк из множества \(W\). Таким образом, множество \(W\)* содержит пустую строку, и если строка α принадлежит множеству \(W\)*, а строка \(β\) принадлежит множеству \(W\), то строка \(αβ\) принадлежит множеству \(W\)*. Более того, все элементы множества \(W\)* можно представить в таком виде, то есть \(W\)* является пересечением всех множеств с указанными выше свойствами. Например, если \(W\)={a,ab}, то \(W\)* состоит из всех строк, в которых перед каждой буквой `b' идёт хотя бы одна буква `a'.
Задано некоторое множество строк \(W\). Требуется найти множество \(X\), такое, что \(W\)*=\(X\)* и множество \(X\) имеет минимальное возможное число элементов. В случае, если таких множеств несколько, подходит любое из них. Например, если \(W\)={a,aabb,ab,ac,b,bac}, то единственным множеством, удовлетворяющим условиям задачи будет множество {a,ac,b}.
Входной файл состоит из набора строк, каждая из которых является элементом множества \(W\). Каждая строка из множества \(W\) встречается во входном файле хотя бы один раз. Суммарная длина всех строк во входном файле не превосходит \(10^4\). Количество строк во входном файле не превосходит \(10^4\). После каждой строки из множества \(W\) во входном файле идёт перевод строки (пара символов с ASCII кодами 13 и 10). Строки состоят из символов с ASCII кодами от 33 до 126 включительно.
Выведите в выходной файл элементы одного из множеств \(X\), удовлетворяющих условиям задачи. Каждая строка множества \(X\) должна быть выведена ровно один раз. Строки должны идти в лексикографическом порядке (лексикографический порядок используется в словарях, в этом порядке строка `ab' меньше строки `aba' и строка `ab' меньше строки `ac'). После каждой строки множества \(X\) должен идти один перевод строки.
a aabb ab ac b bac
a ac b
Идёт 2163 год. Мишу, который работает в отделении таможни при космодроме города Нью-Питер, вызвал в кабинет шеф.
Как оказалось, недавно Министерство Налогов и Сборов выделило отделению определённую сумму денег на установку новых аппаратов для автоматического досмотра грузов. Естественно, средства были выделены с таким расчётом, чтобы грузы теперь находились на таможне ровно столько времени, сколько требуется непосредственно на их досмотр.
В руках шефа каким-то образом оказались сведения о надвигающейся ревизии – список из \(N\) грузов, которые будут контролироваться Министерством. Для каждого груза известны время его прибытия, отсчитываемое с некоторого момента, хранимого в большом секрете, и время, требуемое аппарату для обработки этого груза. Шеф дал Мише задание по этим данным определить, какое минимальное количество аппаратов необходимо заказать на заводе, чтобы все грузы Министерства начинали досматриваться сразу после прибытия. Необходимо учесть, что конструкция тех аппаратов, которые было решено установить, не позволяет обрабатывать два груза одновременно на одном аппарате. Напишите программу, которая поможет Мише справиться с его задачей.
На первой строке входного файла задано число \(N\) (0 ≤ \(N\) ≤ 50 000). На следующих \(N\) строках находится по 2 целых положительных числа \(T_i\) и \(L_i\) – время прибытия соответствующего груза и время, требуемое для его обработки (1 ≤ \(T_i\) ≤ \(10^6\), 1 ≤ \(L_i\) ≤ \(10^6\)).
В выходной файл выведите одно число – наименьшее количество аппаратов, которое нужно установить, чтобы не вызвать подозрений у Министерства.
3 3 2 4 2 5 2
2
5 13 4 15 1 11 5 12 3 10 3
3
Строки формируются по правилу: S1 = a, Si = Si-1 + chr(i) + Si-1. Необходимо по данной строке найти максимальное i, такое что данная строка является подстрокой Si
Учёные любят присваивать идентификаторы всему живому. Поэтому они обозначают динозавров I эпохи кодом `a'. Динозавры II эпохи, как произошедшие от динозавров I эпохи, именуются кодом `aba'. Ящеры III эпохи – `abacaba', и вообще если \(C\)(\(n\)) – код динозавров эпохи \(n\), то \(C\)(\(n\)+1)=\(C\)(\(n\))+\(S\)(\(n\)+1)+\(C\)(\(n\)) , где \(S\)(\(n\)+1) – символ очередной (\(n\)+1-ой) эпохи. Символ первой эпохи – `a' , символ второй эпохи – `b', затем `c', `d', …, `x', `y', `z'. После букв учёные почему-то перешли на цифры, и обозначили эпохи с XXVII по XXXVI соответственно `0', `1', …, `9' .
После XXXVI эпохи динозавры вымерли, и уже утверждённое название XXXVII эпохи (`α') отдали астрономам для нового кратера на Марсе.
Астрономы (в знак благодарности) нашли какую-то отдалённую звезду с огромной статуей динозавра, похожего на земные аналоги. Экспедиция, посетившая указанную звезду, нашла под статуей надпись, очевидно, с кодом этого динозавра. Впрочем, часть надписи стёрлась. Теперь учёные хотят максимально завысить древность находки. Для этого нужно определить, в коде динозавров какой эпохи – самой древней из подходящих – встречается данный образец (как подстрока). Такую задачу не по силам решить даже астрономам.
На первой и единственной строке входного файла находится непустая строка, состоящая из символов `a', …, `z', `0', …, `9'. Длина строки не превосходит 100.
Выведите два числа – номер эпохи и смещение образца от начала кода. Если же статуя изображает неземного динозавра (или код инопланетян отличается от земного), выведите в выходной файл число 0.
a
1 0
bae
5 13
Петя и его друг Андрейка только что познакомились с китайской мифологией. Особенно им понравились драконы. Поэтому мальчики решили сделать своих драконов из проволоки. Андрейка взял белую проволоку и согнул из неё дракона Лун-Инь: этот дракон спал, свернувшись клубком на столе. Тогда Петя взял чёрную проволоку и согнул дракона Лун-Ян. Этот дракон ничем не походил на Андрейкиного Лун-Иня. Его тело состояло из отрезков прямых, а когда он спал, то сворачивался в виде плоской замкнутой несамопересекающейся ломаной. Более того, Лун-Ян не ложился плашмя на стол для сна, а вставал перпендикулярно поверхности. Удержать равновесие дракон может только тогда, когда существуют две его различные точки, касающиеся стола, такие что центр масс дракона находится строго между ними.
Вам требуется узнать, сколько было устойчивых положений у дракона, в которых он мог сохранять равновесие во время сна, если известно, что форма ломаной в виде которой дракон спит всегда одна и та же.
В первой строке входного файла содержится число \(n\) (3 ≤ \(n\) ≤ 1000) – количество вершин ломаной и два целых числа \(x_c\) и \(y_c\) – координаты центра масс дракона (-1000 ≤ \(x_c\), \(y_c\) ≤ 1000). В следующих \(n\) строках содержится по два целых числа \(x_i\) и \(y_i\) (-1000 ≤ \(x_i\), \(y_i\) ≤ 1000) – координаты вершин ломаной в порядке обхода против часовой стрелки (ось \(O_X\) направлена вправо, а ось \(O_Y\) – вверх).
В первой строке выходного файла выведите число устойчивых положений дракона.
12 1 2 3 4 2 4 2 3 1 3 1 4 0 4 0 0 1 0 1 1 2 1 2 0 3 0
4
Петя и Маша играют в увлекательную игру. Маша загадывает число от 1 до \(n\), записывает его на чистый тетрадный лист, кладёт в конверт и запечатывает. После этого Петя пытается это число отгадать. Он может задавать любые вопросы про это число: "Верно ли, что это число равно трем?", "Верно ли, что это число – число Фибоначчи?", "Верно ли, что это число простое?" и так далее. Получив ответ "Да", Петя отдает Маше a конфет, а в случае ответа "Нет" – b конфет.
В какой-то момент Петя произносит сакраментальную фразу: "Я знаю, что это за число". После этого они распечатывают конверт в присутствии свидетелей, убеждаются в Петиной правоте, и, таким образом, Маша получает внушительную порцию конфет, а Петя – моральное удовлетворение.
Петя очень любит играть в эту игру, но его кондитерские запасы ограничены. Поэтому Петя хочет выяснить, какое минимальное количество конфет может ему потребоваться, чтобы отгадать Машино число в худшем случае. Помогите Пете найти указанный минимум.
Входной файл содержит три целых числа: \(n\) (1 ≤ \(n\) ≤ 1000), \(a\) и \(b\) (0 ≤ \(a\), \(b\) ≤ \(10^6\)).
Выведите одно число – минимальное количество конфет, которое должен иметь Петя, чтобы отгадать Машино число в худшем случае.
8 1 1
3
10 5 0
5
7 0 2
2