Страница: 1 2 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

На город Энск нападает флот инопланетян. Флот состоит из n космических кораблей, каждый из которых имеет форму равнобедренного прямоугольного треугольника.

Носом инопланетного корабля считается вершина, угол при которой прямой, а осью корабля называется высота, опущенная на гипотенузу.

Флот инопланетян прилетел с северо-востока, и застыл в таком положении, что все оси кораблей направлены строго на юго-запад.

Единственный способ нанести урон инопланетной армии – это пустить из некоторой точки поверхности Земли лазерный луч вертикально вверх. Пущенный так луч прожигает насквозь все вражеские корабли, через которые он проходит (даже те, которые он задевает по границе). Но этот выстрел повредит инопланетянам только в случае, если все n кораблей будут при этом поражены.

Военные власти города Энска решили нанести удар по вражеским войскам. Для этого решено поставить лазеры в одну из точек, над которыми находятся все n вражеских кораблей.

Помогите военным определить площадь территории, на которой можно поставить лазер.

Входные данные

В первой строке входного файла содержится целое число \(n\) – количество инопланетных кораблей (1 ≤ \(n\) ≤ 100).

В каждой из следующих n строк описывается положение очередного корабля. Описание состоит из трех целых чисел \(x_i\), \(y_i\) и \(s_i\), где \(x_i\) и \(y_i\) – координаты носа, а \(s_i\) – размер корабля. Поскольку корабль имеет форму равнобедренного прямоугольного треугольника, размером корабля военные решили называть длину катета.

Размеры кораблей – положительные числа, не превышающие 1 000. Координаты носов кораблей не превышают по абсолютной величине \(10^5\).

Выходные данные

В выходной файл выведите площадь территории, над которой находятся все инопланетные корабли. Выведите ответ с точностью до трех знаков после десятичной точки.

Примеры
Входные данные
3
2 4 6
4 2 7
3 3 5
Выходные данные
4.500
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

«Ну не гномы, а наказание какое-то!», – подумала Белоснежка, в очередной раз пытаясь уложить гномов спать. Одного уложишь – другой уже проснулся! И так всю ночь.

У Белоснежки \(n\) гномов, и все они очень разные. Она знает, что для того, чтобы уложить спать \(i\)-го гнома нужно \(a_i\) минут, и после этого он будет спать ровно \(b_i\) минут. Помогите Белоснежке узнать, может ли она получить хотя бы минутку отдыха, когда все гномы будут спать, и если да, то в каком порядке для этого нужно укладывать гномов спать.

Например, пусть есть всего два гнома, \(a_1\) = 1, \(b_1\) = 10, \(a_2\) = 10, \(b_2\) = 20. Если Белоснежка сначала начнет укладывать первого гнома, то потом ей потребуется целых 10 минут, чтобы уложить второго, а за это время проснется первый. Если же она начнет со второго гнома, то затем она успеет уложить первого и получит целых 10 минут отдыха.

Входные данные

Первая строка входного файла содержит число \(n\) (1 ≤ \(n\) ≤ \(10^5\)), вторая строка содержит числа \(a_1\),\(a_2\),… \(a_n\), третья – числа \(b_1\),\(b_2\),… \(b_n\) (1 ≤ \(a_i\), \(b_i\) ≤ \(10^9\)).

Выходные данные

Выведите в выходной файл \(n\) чисел – порядок, в котором нужно укладывать гномов спать. Если Белоснежке отдохнуть не удастся, выведите число -1.

Примеры
Входные данные
2
1 10
10 20
Выходные данные
2 1
Входные данные
2
10 10
10 10
Выходные данные
-1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Петя и Вася играют в очередную интересную игру. У них есть лист бумаги, на котором изображены \(n\) кружочков, помеченных числами от 1 до \(n\). Участники по очереди рисуют стрелочки, соединяющие кружочки. При этом стрелочку из кружочка a в кружочек \(b\) разрешено проводить, если выполнены два условия:

1. еще нет стрелочки из \(a\) в \(b\);

2. нельзя дойти по стрелочкам из \(b\) в \(a\).

Например, в позиции на рис. 1 можно поставить одну из трех стрелочек (рис. 2).

Проигрывает тот, кто не может сделать ход.

Петя решил написать программу, играющую в эту игру. Для этого он хочет сначала посчитать, сколько различных позиций может получиться на доске.

Входные данные

Входной файл содержит одно число \(n\) (1 ≤ \(n\) ≤ 100).

Выходные данные

Выведите в выходной файл число возможных позиций без ведущих нулей.

Пояснение к примеру

Примеры
Входные данные
3
Выходные данные
25
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Паук и паучиха плывут по озеру на двух веточках. Плавать они не умеют, поэтому смогут встретиться только тогда, когда веточки соприкоснутся.

Считая, что веточки имеют форму отрезков, и что они плывут с постоянными скоростями, определите, сколько осталось ждать встречи несчастным членистоногим.

Входные данные

Входной файл содержит 12 чисел: \(x_1\), \(y_1\), \(x_2\), \(y_2\), \(x_3\), \(y_3\), \(x_4\), \(y_4\), \(v_{1x}\), \(v_{1y}\), \(v_{2x}\), \(v_{2y}\). Координаты вершин первого отрезка: (\(x_1\), \(y_1\)) и (\(x_2\), \(y_2\)), координаты вершин второго отрезка: (\(x_3\), \(y_3\)) и (\(x_4\), \(y_4\)), скорость первого отрезка (\(v_{1x}\), \(v_{1y}\)), скорость второго отрезка (\(v_{2x}\), \(v_{2y}\)). Все числа целые и не превосходят по модулю \(10^4\). В начальный момент времени веточки не соприкасаются. Гарантируется, что веточки имеют ненулевую длину.

Выходные данные

Выведите в выходной файл время до ближайшего момента, когда веточки соприкоснутся, с ошибкой не более \(10^{-4}\). Если веточки не соприкоснутся никогда, выведите число -1.

Примеры
Входные данные
0 0 -1 3
4 4 7 7
3 0
0 -1
Выходные данные
1.6
Входные данные
0 0 -1 3
4 4 7 7
1 0
0 -3
Выходные данные
-1

Открыв глаза, Принц Персии обнаружил, что находится на верхнем уровне подземного лабиринта Джаффара. Лабиринт состоит из \(h\) уровней, расположенных строго друг под другом. Каждый уровень представляет собой прямоугольную площадку, разбитую на \(m\) × \(n\) участков. На некоторых участках стоят колонны, поддерживающие потолок, на такие участки Принц заходить не может.

Принц может перемещаться с одного участка на другой участок того же уровня, если у этих участков есть общая сторона, и ни один из этих участков не содержит колонну. Это перемещение занимает у Принца 5 секунд.

Полы в лабиринте Джаффара чрезвычайно тонкие, и Принцу не составляет труда сильным ударом ноги проломить пол под собой, если только на соответствующем участке нижнего уровня не находится колонна. Когда пол проламывается, Принц проваливается на один уровень вниз, при этом не перемещаясь в горизонтальной плоскости. Это действие также занимает у Принца 5 секунд. Конечно, если Принц уже находится на самом нижнем уровне, то пол под ним не проломится.

На одном из участков нижнего уровня Принца ждет Принцесса, отказавшаяся выйти замуж за злого Джаффара. Помогите Принцу найти Принцессу, потратив на это как можно меньше времени.

Входные данные

В первой строке входного файла содержатся натуральные числа \(h\), \(m\) и \(n\) – высота и горизонтальные размеры лабиринта (2 ≤ \(h\), \(m\), \(n\) ≤ 50). Далее во входном файле приведены \(h\) блоков, описывающих уровни лабиринта в порядке от верхнего к нижнему.

Каждый блок содержит \(m\) строк, по \(n\) символов в каждой: «.» (точка) обозначает свободный участок, «o» (строчная латинская буква «o») обозначает участок с колонной, «1» обозначает свободный участок, в котором оказался Принц в начале своего путешествия, «2» обозначает свободный участок, на котором томится Принцесса.

Символы «1» и «2» встречаются во входном файле ровно по одному разу: символ «1» – в описании самого верхнего уровня, а символ «2» – в описании самого нижнего.

Соседние блоки разделены одной пустой строкой.

Выходные данные

В выходной файл выведите минимальное время в секундах, необходимое Принцу, чтобы найти Принцессу. Поскольку Добро всегда побеждает Зло, гарантируется, что Принц может это сделать.

Примеры
Входные данные
3 3 3
1..
oo.
...

ooo
..o
.oo

ooo
o..
o.2
Выходные данные
60

Страница: 1 2 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест