Олег — известный поклонник соревнований по программированию. Он знает всех участников всех соревнований за последние десять лет и может про любого участника сказать, сколько задач решила команда с его участием на любом соревновании. И еще Олег очень любит теорию чисел.
В таблице результатов соревнования по программированию команды упорядочены по убыванию количества решенных задач. Олег называет таблицу результатов красивой, если для всех команд количество решенных ими задач равно нулю или является делителем количества задач на соревновании. Когда какая-нибудь команда сдает задачу, количество сданных задач у нее увеличивается на один. Никакая команда не может сдать две или более задач одновременно, также две команды не могут одновременно сдать задачу.
Глядя на красивую таблицу результатов, Олег заинтересовался: а сколько еще задач смогут суммарно сдать команды так, чтобы после каждой сданной задачи таблица результатов оставалась красивой? Помогите ему выяснить это.
Первая строка входного файла содержит два целых числа: \(n\) и \(m\) — количество команд и количество задач на соревновании, соответственно (\(1 \le n \le 100\), \(1 \le m \le 10^9\)). Вторая строка содержит n целых чисел, упорядоченных по невозрастанию: для каждой команды задано, сколько задач она решила. Гарантируется, что все отличные от нуля числа являются делителями числа \(m\).
Выведите в выходной файл одно число: максимальное количество задач, которое суммарно могут еще сдать команды так, чтобы после каждой сданной задачи таблица результатов оставалась красивой.
Комментарий к примеру тестов.
В приведенном примере команды на 4 и 5 месте могут сдать по одной задаче, команда на 6 месте три, а команда на 7 месте — 4. Суммарно таким образом команды смогут сдать 9 задач
7 12 12 6 4 3 3 1 0
9
Однажды Петя узнал очень важную последовательность из \(n\) чисел. Тщательно проанализировав ее, он обнаружил, что она является арифметической прогрессией. Чтобы не забыть он записал ее элементы на \(n\) карточках.
Но затем случилась неприятность. Не зная всю важность этой последовательности, его брат Вовочка взял еще \(n\) карточек и написал на них произвольные числа, а потом перемешал все \(2n\) карточек.
Теперь Петя хочет восстановить исходную последовательность по этим карточкам. К сожалению возможно, что это можно сделать несколькими способами, но Петю устроят любые \(n\) чисел, образующие арифметическую прогрессию.
Петя не может сделать это вручную, поэтому обратился к вам за помощью.
Напомним что последовательность \(a_1, a_2, \ldots, a_n\) называется арифметической прогрессией, если \(a_i = a_{i-1} + d\) для всех \(i\) от 2 до \(n\) и некоторого \(d\). Число \(d\) называется разностью арифметической прогрессии.
В первой строке входного файла находится целое число \(n\) (\(1 \le n \le 100\,000\)). В следующей строке находится \(2n\) целых чисел по модулю не превосходящих \(10^9\) — числа, написанные на карточках, перечисленные в произвольном порядке. Гарантируется, что можно выбрать \(n\) из них так, чтобы они образовывали арифметическую прогрессию.
В первой строке выходного файла выведите \(a_1\) и \(d\) — первый элемент и разность найденной арифметической прогрессии. Если \(d = 0\), число \(a_1\) должно встречаться среди заданных чисел \(n\) раз.
Если существует несколько решений, выведите любое.
Робот Бендер решил открыть аттракцион «Кручу-Верчу» с целью своего обогащения. Аттракцион состоит в следующем: Бендер прячет шарик под одним из \(k\) одинаковых стаканчиков, расположенных на позициях от 1 до \(k\), затем \(n\) раз быстро меняет местами какие-то пары стаканчиков, после чего предлагает отгадать под каким из стаканчиков сейчас шарик.
Бендер — робот, поэтому действует он по определенной программе. Бендер строит последовательность целых чисел \(x_i\), при этом \(x_1 = c\), а \(x_i = a \cdot x_{i-1} + b\) для \(i > 1\).
На \(i\)-ом шаге Бендер меняет местами стаканчики на позициях с номерами \((x_i \bmod k) + 1\) и \(\left( (x_i + 1) \bmod k \right) + 1\).
В начале робот прячет шарик под стаканчик на позиции с номером \(r\). Бендер хочет, чтобы после \(n\) обменов шарик оказался под стаканчиком на позиции с номером \(l\).
Найдите такие \(a\), \(b\) и \(c\), чтобы стаканчик с шариком переместился с \(r\)-й позиции на \(l\)-ю.
В единственной строке входного файла четыре целых числа \(n\), \(k\), \(r\) и \(l\) (\(1 \le n \le 10^5\); \(2 \le k \le 10\); \(1 \le r, l \le k\)).
Если таких чисел не существует, выведите в выходной
файл единственное слово «Impossible
».
Иначе выведите три целых неотрицательных числа \(a\), \(b\) и \(c\).
Числа не должны превосходить \(1000\).
На днях Алиса делала уборку в своей комнате и нашла дневник, который вела в начальной школе. Там она с удивлением обнаружила запись о том насколько ее поразило то, что \(2 + 2 = 2 \cdot 2\). Невероятно, умножение и сложение дают один и тот же результат!
Эта запись натолкнула Алису на следующую задачу: пусть целые заданы числа \(a\) и \(b\). Сколько различных значений в наборе чисел
\(a + b\), | \(\;a - b\), | \(\;a \cdot b\), | \(\;a / b\), | \(\;a^b\), |
\(b + a\), | \(\;b - a\), | \(\;b \cdot a\), | \(\;b / a\), | \(\;b^a\). |
Деление происходит без округления, результат деления может не быть целым числом. Если какое-либо выражение из этого набора некорректно, то Алиса его не рассматривает. Некорректными считаются деление на ноль и возведение нуля в неположительную степень.
Первая строка входного файла содержит целые числа \(a\) и \(b\), разделенные пробелом (\(|a|, |b| \le 10^9\)).
Выведите в выходной файл количество различных чисел в приведенном наборе.
На планете Шелезяка катастрофа — запасы смазки подходят в концу. В связи с этим правительство решило организовать всепланетное соревнование, главный приз в котором — вагон смазочных материалов.
Соревнование проводится в несколько этапов, каждый из которых поделен на множество раундов. В каждом раунде принимают участие два игрока. Жюри предоставляет им большое целое число \(n\). Затем игроки делают ходы по очереди. Первый ход первого игрока заключается в том, что игрок выписывает на специальном поле цифру, причем первым ходом запрещается выписывать ноль. В дальнейшем ход игрока заключается в том, что он приписывает справа к уже написанному числу произвольную цифру. Выигрывает тот, после чьего хода выписанное число больше или равно \(n\).
Знаменитый ученый-робот «ЩК-33» считает, что результат игры легко предсказуем. Для доказательства он решил предоставить программу, которая определяет, кто выигрывает, если оба игрока действуют по оптимальной стратегии. К сожалению, из-за недостатка смазки, его манипуляторы вышли из строя, поэтому он просит вас о помощи.
Первая строка входного файла содержит целое число \(n\) (\(1 \le n \le 10^{100\,000}\)). Это число не содержит ведущих нулей.
Выведите «First
», если при оптимальной игре выигрывает первый игрок, и «Second
» в противном случае.
22
First
1
First