В некотором царстве, в некотором государстве было \(N\) городов, и все они, судя по главной карте императора, имели целые координаты. В те годы леса были дремучие, дороги же строить умели только параллельно осям координат, так что расстояние между двумя городами определялось как |\(x_1\) - \(x_2\)| + |\(y_1\) - \(y_2\)|.
Император решил построить \(N\)+1-ый город и сделать его столицей своего государства, при этом координаты столицы также должны быть целыми. Место для столицы следует выбрать так, чтобы среднее арифметическое расстояний между столицей и остальными городами было как можно меньше. Однако, разумеется, столицу нельзя строить на месте существующего города.
Нелегкая задача выбрать место для столицы поручена Вам.
В первой строке вводится число \(N\) - количество городов (1 <= \(N\) <= 100). Следующие \(N\) строк содержат координаты городов - пары целых чисел, не превышающих 1000 по абсолютной величине.
Выведите два целых числа - координаты точки, где следует построить столицу. Если решений несколько, выведите любое.
8 0 0 1 0 2 0 0 1 2 1 0 2 1 2 2 2
1 1
4 0 0 1 1 0 1 1 0
0 -1
Ваня и Петя играют в следующую игру. Ваня пишет на бумаге какую-либо перестановку чисел от 1 до \(N\) (то есть выписывает все числа от 1 до \(N\) в некотором порядке) и расставляет на столе в ряд \(N\) предметов. После этого Петя переставляет предметы в соответствии с Ваниной перестановкой. А именно, Петя выполняет следующие действия: если i-ое число в Ваниной перестановке равно \(a_i\), то Петя ставит предмет, который стоит на i-ом месте, на место с номером \(a_i\).
Обозначим предметы числами от 1 до \(N\). Тогда начальное расположение предметов можно обозначить последовательностью чисел (1, 2, ..., \(N\)). К примеру, если \(N\) = 5, то начальное расположение предметов есть (1, 2, 3, 4, 5). Пусть Ваня написал перестановку <2, 5, 4, 3, 1>. Это значит, что после перемещения предметов они окажутся расставлены в следующем порядке: (5, 1, 4, 3, 2).
Однако, переставив предметы, Петя не останавливается на достигнутом и вновь переставляет их в соответствии с Ваниной перестановкой. Снова, если i-ое число в Ваниной перестановке равно \(a_i\), то Петя ставит предмет, который стоит на i-ом месте на место с номером \(a_i\). Так, если в приведенном выше примере повторно применить перестановку, предметы окажутся расположены в следующем порядке: (2, 5, 3, 4, 1).
Таким образом, Петя переставляет предметы в соответствии с Ваниной перестановкой, пока их расположение не окажется таким же, как исходное. В нашем примере Пете потребуется сделать еще 4 действия, порядок предметов после каждого из них будет следующим: (1, 2, 4, 3, 5), (5, 1, 3, 4, 2), (2, 5, 4, 3, 1), (1, 2, 3, 4, 5). Всего Пете потребовалось применить перестановку 6 раз.
Добрый Ваня хочет, чтобы Пете пришлось выполнить как можно больше действий. Помогите ему выбрать соответствующую перестановку.
Вводится единственное целое число \(N\) - количество предметов (1 <= \(N\) <= 100).
Выведите перестановку чисел от 1 до \(N\) такую, что количество действий, которое придется сделать Пете, максимально. Если таких перестановок несколько, можно вывести любую.
5
2 1 4 5 3
Фирма Macrohard получила заказ от армии одной страны на реализацию комплекса программного обеспечения для нового суперсекретного радара. Одной из наиболее важных подпрограмм в разрабатываемом комплексе является процедура сортировки.
Однако в отличие от обычной сортировки, эта процедура должна сортировать не произвольный массив чисел, который передается ей на вход, а специальный заранее заданный массив из \(N\) чисел, в котором записана некоторая фиксированная перестановка чисел от 1 до \(N\), и кроме того, ни одно число в нем изначально не находится на своем месте (то есть на позиции с номером i изначально не находится число \(i\)).
В связи с повышенными требованиями к надежности комплекса в процессе сортировки разрешается выполнять единственную операцию - менять местами два соседних элемента массива. Кроме того, в связи с необходимостью соответствия уставу, не разрешается изменять положение числа, которое уже находится на своем месте.
Например, если массив из 6 элементов в некоторый момент имеет вид <2, 1, 3, 6, 4, 5>, то можно поменять местами 1 и 2, 6 и 4 или 4 и 5, а менять местами 1 и 3 или 3 и 6 нельзя, поскольку число 3 находится на своем месте (на позиции с номером 3).
Вам дан входной массив и поставлено важное задание. Найти последовательность обменов (не обязательно кратчайшую), сортирующую массив и удовлетворяющую приведенным условиям.
Подсказка
Найти такую последовательность обменов всегда возможно.
В первой строке вводится целое число \(N\) - размер входного массива (1 <= \(N\) <= 100). Вторая строка содержит \(N\) целых чисел - исходную перестановку чисел от 1 до \(N\) в массиве. Изначально ни одно число не стоит на своем месте.
Выведите \(K\) строк, где \(K\) - количество обменов в Вашей сортировке. На каждой строке выведите по два числа \(x_i\) и \(y_i\), разделенных пробелом - позиции в массиве, числа на которых следует поменять местами на i-ом обмене. Помните, что должно выполняться условие |\(x_i\) - \(y_i\)| = 1 и что нельзя перемещать число, которое уже стоит на своем месте.
В приведенном примере массив последовательно имеет следующий вид:
исходный вид массива
2 3 1 6 4 5
поменяли местами числа на 2 и 3 позициях
2 1 3 6 4 5
поменяли местами числа на 1 и 2 позициях
1 2 3 6 4 5
поменяли местами числа на 4 и 5 позициях
1 2 3 4 6 5
поменяли местами числа на 5 и 6 позициях
1 2 3 4 5 6
6 2 3 1 6 4 5
2 3 1 2 4 5 5 6
В околоземном космическом пространстве накопилось много мусора, поэтому ученые сконструировали специальный аппарат - ловушку для космического мусора. Для того, чтобы хорошо собирать мусор, этот аппарат должен двигаться по достаточно сложной траектории, сжигая собранный по пути мусор. Ловушка может передвигаться в пространстве по 6 направлениям: на север (\(N\)), на юг (\(S\)), на запад (\(W\)), на восток (\(E\)), вверх (\(U\)) и вниз (\(D\)). Движением ловушки управляет процессор. Программа движения задается шестью правилами движения, которые соответствуют каждому из указанных направлений. Каждое такое правило представляет собой строку символов из множества {\(N\), \(S\), \(W\), \(E\), \(U\), \(D\)}.
Команда ловушки есть пара из символа направления и параметра - целого положительного числа \(M\). При исполнении такой команды ловушка в соответствии со своей программой выполняет следующее. Если параметр больше 1, то она перемещается на один метр в направлении, которое указано в команде, а затем последовательно выполняет команды, заданные правилом для данного направления, с параметром меньше на 1. Если же параметр равен 1, то просто перемещается на один метр в указанном направлении.
Пусть, например, заданы следующие правила:
Первые шесть строк входных данных задают правила для команд с направлением \(N\), \(S\), \(W\), \(E\), \(U\) и \(D\) соответственно. Каждая строка содержит не более 100 символов (и может быть пустой). Следующая строка содержит команду ловушки: сначала символ из множества {\(N\), \(S\), \(W\), \(E\), \(U\), \(D\)}, затем пробел и параметр команды - целое положительное число, не превышающее 100.
Выведите единственное число - количество перемещений, которое совершит ловушка. Гарантируется, что ответ не превышает \(10^9\).
N NUSDDUSE UEWWD U WED S 3
34