---> 1657 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 136 137 138 139 140 141 142 >> Отображать по:

Невзвешенный ориентированный граф задан своей матрицей смежности. Требуется построить его транзитивное замыкание, то есть матрицу, в которой в \(i\)-й строке и \(j\)-м столбце находится 1, если от вершины \(i\) можно добраться до вершины \(j\), и 0 - иначе.

Входные данные

В первой строке дано число \(N\) (\(1 \le N \le 100\)) - число вершин в графе. Далее задана матрица смежности графа: в \(N\) строках даны по \(N\) чисел 0 или 1 в каждой. \(i\)-е число в \(i\)-й строке всегда равно 1.

Выходные данные

Необходимо вывести матрицу транзитивного замыкания графа в формате, аналогичным формату матрицы смежности.

Примеры
Входные данные
4
1 1 0 0
0 1 1 0
1 0 1 0
0 0 1 1
Выходные данные
1 1 1 0 
1 1 1 0 
1 1 1 0 
1 1 1 1 

Во время контрольной работы профессор Флойд заметил, что некоторые студенты обмениваются записками. Сначала он хотел поставить им всем двойки, но в тот день профессор был добрым, а потому решил разделить студентов на две группы: списывающих и дающих списывать, и поставить двойки только первым.

У профессора записаны все пары студентов, обменявшихся записками. Требуется определить, сможет ли он разделить студентов на две группы так, чтобы любой обмен записками осуществлялся от студента одной группы студенту другой группы.

Входные данные

В первой строке находятся два числа \(N\) и \(M\) - количество студентов и количество пар студентов, обменивающихся записками (\(1 \le N \le 100\), \(0 \le M \le \frac{N \cdot (N-1)}{2}\)). Далее в \(M\) строках расположены описания пар студентов: два числа, соответствующие номерам студентов, обменивающихся записками (нумерация студентов идёт с 1). Каждая пара студентов перечислена не более одного раза.

Выходные данные

Необходимо вывести ответ на задачу профессора Флойда. Если возможно разделить студентов на две группы - выведите YES; иначе выведите NO.

Примеры
Входные данные
3 2
1 2
2 3
Выходные данные
YES
Входные данные
3 3
1 2
2 3
1 3
Выходные данные
NO
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Профессор Флойд и профессор Дейкстра ненавидят друг друга. После переезда университета во вновь отстроенный университетский городок они потребовали себе кабинеты в зданиях, максимально удалённых друг от друга. Вам поручено найти расстояние между двумя такими зданиями.

Иными словами, требуется найти два здания, кратчайший путь между которыми наибольший среди всех пар зданий, и вывести длину этого пути. Так как профессорам иногда все же нужно встречаться, путь между выбранными зданиями должен существовать.

Входные данные

В первой строке находятся два числа \(N\) и \(M\) - количество зданий и количество дорог, соединяющих здания (\(1 \le N \le 100, 0 \le M \le \frac{N \cdot (N-1)}{2}\)). Далее в \(M\) строках расположены описания дорог: 3 целых числа \(s_i\), \(e_i\), \(l_i\) - здания, в которых начинается и заканчивается дорога и длина дороги соответственно (\(1 \le s_i, e_i \le N, 0 \le l_i \le 100\), дороги двунаправленные).

Выходные данные

Необходимо вывести одно число - искомое расстояние.

Примеры
Входные данные
3 2
1 2 1
2 3 2
Выходные данные
3
Входные данные
3 0
Выходные данные
0
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Сегодня у студентов праздник! В одном из новых зданий университета решили открыть столовую. Для этих целей требуется выбрать одно из зданий, в котором и будет располагаться столовая. Чтобы студенты как можно меньше отвлекались от учёбы, было решено выбрать такое здание, чтобы максимальное расстояние от него до всех остальных зданий было как можно меньше.

Помогите найти такое здание!

Входные данные

В первой строке находятся два числе \(N\) и \(M\) - количество зданий и количество дорог, соединяющих здания (\(1 \le N \le 100, 0 \le M \le \frac{N \cdot (N-1)}{2}\)). Далее в \(M\) строках расположены описания дорог: 3 целых числа \(s_i\), \(e_i\), \(l_i\) - здания, в которых начинается и заканчивается дорога и длина дороги соответственно (\(1 \le s_i, e_i \le N, 0 \le l_i \le 100\), дороги двунаправленные).

Выходные данные

Необходимо вывести одно число - номер искомого здания. Если есть несколько зданий удовлетворяющих поставленным критериям, выберите среди них здание с наименьшим номером.

Примеры
Входные данные
3 2
1 2 1
2 3 2
Выходные данные
2
Входные данные
3 1
1 2 10
Выходные данные
1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Профессор Флойд живёт в очень опасном районе города. Ежедневно бандиты грабят на улицах прохожих. Читая криминальную хронику, профессор Флойд вычислил вероятность быть ограбленным при проходе по каждой улице города.

Теперь он хочет найти наиболее безопасный путь от дома до университета, в котором он преподаёт. Иными словами, он хочет найти путь от дома до университета, для которого вероятность быть ограбленным минимальна.

Входные данные

В первой строке находятся два числа \(N\) и \(M\) - количество зданий и количество улиц, соединяющих здания (\(1 \le N \le 100, 1 \le M \le \frac{N \cdot (N-1)}{2}\)). В следующей строке находятся числа \(S\) и \(E\) -- номер дома, в котором живёт профессор и номер дома, в котором находится университет соответственно. Далее в \(M\) строках расположены описания дорог: 3 целых числа \(s_i, e_i, p_i\) - здания, в которых начинается и заканчивается дорога и вероятность в процентах быть ограбленным, пройдя по дороге соответственно (\(1 \le s_i, e_i \le N, 0 \le p_i \le 100\), дороги двунаправленные). Гарантируется, что существует хотя бы один путь от дома профессора до университета.

Выходные данные

Необходимо вывести одно число - минимальную возможную вероятность быть ограбленным. Выведите ответ с максимально возможной точностью.

Примеры
Входные данные
3 3
1 3
1 2 20
1 3 50
2 3 20
Выходные данные
0.36

Страница: << 136 137 138 139 140 141 142 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест