---> 1657 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 170 171 172 173 174 175 176 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В недавно открытой раздевалке школы «Интеллектуал» решено поставить такие же шкафчики, как и в уже давно используемых раздевалках, но более новой модификации — состоящие из \(H*W\) ячеек. Напомним, что в каждую ячейку можно поставить ящичек, чтобы хранить в нём свои вещи. Однако новый директор школы запретил ученикам хранить свои вещи вне ящичков, поэтому тем, кому ящички не достались, приходится просить кого-то из владельцев соседних четырёх (или менее, если ячейка находится на границе) ячеек похранить свои вещи у себя. Если же ни у кого из соседей по ячейкам нет ящичков, этот ученик жалуется в администрацию.

Классному руководителю вдруг стало интересно, сколько же существует способов для каждого ученика определить, давать ли ему ящичек, чтобы никто не пожаловался в администрацию.

Количество учеников равно количеству ячеек.

Входные данные

В единственной строке входного файла содержатся два натуральных числа \(H\) и \(W\) (1 \(\le\) \(H\), \(W\) \(\le\) 8).

Выходные данные

Выведите единственное натуральное число — искомое количество способов.

Примеры
Входные данные
2 2
Выходные данные
11
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
263 megabytes

Иван-царевич в глубокой печали: морской царь поручил ему перепахать до утра огромную пустошь на морском дне и засеять рожью. Понятно, что без волшебства тут не справиться! По счастью, дочь морского царя, Василиса Премудрая, предложила Ивану-царевичу свою помощь.

У Василисы в сундуке хранятся грамоты с древними заклинаниями. Она втайне была в учении у самой Бабы-Яги, поэтому знает, что, чтобы творить волшебство, нужно произнести заклинание, да такое, в котором скрыто содержится нужное волшебное слово. Но достаточно ли сильны заклинания, хранящиеся в сундуке?

Вот что Василиса Премудрая узнала от Бабы-Яги:

Вхождение слова в заклинание — это подпоследовательность букв заклинания, совпадающая со словом. Буквы слова могут идти не подряд, но должны быть расположены в том же порядке. К примеру, заклинания «cadabra» и «barabara» содержат слово «abra», а заклинание «raba» — не содержит.

Вхождение называют скрытым, если никакие две его буквы не идут подряд. Например, в заклинание «abuba» слово «aua» входит скрыто, так как буквы вхождения (первая, третья и пятая) идут не подряд, а через одну. В заклинание «bauab» слово «aua», напротив, входит не скрыто.

Силой заклинания относительно волшебного слова считается количество скрытых вхождений в него этого волшебного слова. Например, волшебное слово «az» в заклинание «abazaba» входит два раза, но только один раз — скрыто, поэтому сила его равна единице.

Василиса хочет посчитать силу заклинания, которое она достала из сундука. Да вот беда — заклинание длинное, вхождений много, а ещё нужно отличать скрытые вхождения от не скрытых...

Зная заклинание и волшебное слово, посчитайте силу этого заклинания относительно данного волшебного слова.

Входные данные

В первой строке входного файла задано заклинание. Во второй строке задано волшебное слово. Обе строки не пусты, состоят из маленьких букв латинского алфавита, а длина каждой из них не превосходит 45 символов.

Выходные данные

В первой строке выходного файла выведите одно число — силу заклинания относительно данного волшебного слова.

Пояснения к примерам

В первом примере волшебное слово «az» входит в заклинание скрыто всего один раз: «a» соответствует первой букве заклинания, а «z» — четвёртой. Другое вхождение волшебного слова, в котором «a» соответствует третьей букве, а «z» — четвёртой, не является скрытым, так как соседние буквы волшебного слова расположены в заклинании рядом.

Во втором примере две буквы «i» могут поместиться, только если они соответствуют четвёртой и шестой буквам заклинания; буква «e», которая должна стоять перед ними, может соответствовать первой или второй букве заклинания.

Примеры
Входные данные
abazaba
az
Выходные данные
1
Входные данные
eeeiiieee
eii
Выходные данные
2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
263 megabytes

Многоугольник топят в жидкости, опуская его из воздуха с постоянной скоростью v метров в минуту. Жидкость разъедает многоугольник со всех сторон с постоянной скоростью c метров в минуту. Для точки (\(x\), \(y\)) внутри многоугольника, опускающейся вместе с ним, выясните, в какой момент разъедающая жидкость доберётся до этой точки.

Граница между воздухом и жидкостью проходит по прямой \(y\)=0. Жидкость разъедает многоугольник как двумерную фигуру. Многоугольник не поворачивается при опускании в жидкость, и в момент времени 0 он не касается жидкости.

В отличие от многоугольника, который считается двумерным, жидкость существует в трёх измерениях. Поэтому она проникает внутрь «дыр» в многоугольнике. Например, если многоугольник имеет форму «чашки», жидкость проникает «внутрь», как показано на рисунке.

Входные данные

В первой строке входного файла записано через пробел пять целых чисел \(n\), \(x\), \(y\), \(v\) и \(c\) (3 \(\le\) \(n\) \(\le\) 30, −100 \(\le\) \(x\) \(\le\) 100, 1 \(\le\) \(y\) \(\le\) 100, 1 \(\le\) \(c\) < \(v\) \(\le\) 100). Следующие \(n\) строк описывают вершины многоугольника; \(i\)-я из них содержит два целых числа \(x\) и \(y\) через пробел (−100 \(\le\) \(x\) \(\le\) 100, 1 \(\le\) \(y\) \(\le\) 100). Вершины даны в порядке обхода против часовой стрелки. Многоугольник не имеет самопересечений и самокасаний, а точка (\(x\), \(y\)) лежит строго внутри него.

Выходные данные

Выведите одно число — время, которое потребуется жидкости, чтобы добраться до точки (\(x\), \(y\)), с точностью не менее четырёх знаков после запятой.

Примеры
Входные данные
4 0 50 2 1
-1 10
1 10
1 90
-1 90
Выходные данные
25.8660
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Назовём парой простого числа p такое простое число \(x\), что |\(p\) − \(x\)| = 2 . На отрезке [\(a\), \(b\)] найдите количество простых чисел, имеющих пару.

Входные данные

В единственной строке входного файла содержатся два натуральных числа \(a\) и \(b\) (2 \(\le\) \(a\) \(\le\) \(b\) \(\le\) 36 * \(10^6\)).

Выходные данные

Выведите единственное натуральное число — количество простых чисел, принадлежащих отрезку [\(a\), \(b\)], имеющих пару.

Примеры
Входные данные
2 10
Выходные данные
3
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В школе продолжительность каждого урока 45 минут, а перемены между уроками – всего 5 минут. Первый урок начинается ровно в 8 часов утра. Напишите программу, отвечающую на вопрос «во сколько в этой школе заканчивается \(K\)-ый урок?»

Входные данные

Вводится одно натуральное число \(K\), не превышающее 15.

Выходные данные

Выведите время окончания \(K\)-ого урока: сначала часы, потом минуты, разделяя их пробелом.

Примеры
Входные данные
1
Выходные данные
8 45
Входные данные
6
Выходные данные
12 55

Страница: << 170 171 172 173 174 175 176 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест