---> 1657 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 18 19 20 21 22 23 24 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Максимальное время работы на одном тесте: 2 секунды

Даны два натуральных числа N и K. Требуется вывести  все цепочки x1, x2, ..., xN такие, что xi - натуральное и 1 ≤ xiK.

Входные данные

Вводятся два натуральных числа N и K (N, K ≤ 6).

Выходные данные

Выведите все требуемые цепочки в произвольном порядке – по одной на строке. Никакая цепочка не должна встречаться более одного раза.

Примеры
Входные данные
2 3
Выходные данные
1 1 
1 2 
1 3 
2 1 
2 2 
2 3 
3 1 
3 2 
3 3 
Максимальное время работы на одном тесте: 1 секунда

В Волшебной стране используются монетки достоинством A1, A2,..., AM. Волшебный человечек пришел в магазин и обнаружил, что у него есть ровно по две монетки каждого достоинства. Ему нужно заплатить сумму N. Напишите программу, определяющую, сможет ли он расплатиться без сдачи.

Входные данные

На вход программы  сначала поступает число N (1 <= N <= 109), затем - число M (1 <= M <= 15) и далее M попарно различных чисел A1, A2,..., AM (1 <= Ai <= 109).

Выходные данные

Сначала выведите K - количество монет, которое придется отдать Волшебному человечку, если он сможет заплатить указанную сумму без сдачи. Далее выведите K чисел, задающих достоинства монет. Если решений несколько, выведите вариант, в котором Волшебный человек отдаст наименьшее возможное количество монет. Если таких вариантов несколько, выведите любой из них.

Если без сдачи не обойтись, то выведите одно число 0. Если же у Волшебного человечка не хватит денег, чтобы заплатить указанную сумму, выведите одно число -1 (минус один).

Примеры
Входные данные
100 6
11 20 30 40 11 99
Выходные данные
3
40 30 30 
#160
  
Максимальное время работы на одном тесте:   5 секунд

В неориентированном графе требуется найти минимальный путь между двумя вершинами.

Входные данные

Первым на вход поступает число N – количество вершин в графе (1 ≤ N ≤ 100). Затем записана матрица смежности (0 обозначает отсутствие ребра, 1 – наличие ребра). Далее задаются номера двух вершин – начальной и конечной.

Выходные данные

Выведите сначала L – длину кратчайшего пути (количество ребер, которые нужно пройти), а потом сам путь. Если путь имеет длину 0, то его выводить не нужно, достаточно вывести длину.

Необходимо вывести путь (номера всех вершин в правильном порядке). Если пути нет, нужно вывести -1.

Примеры
Входные данные
5
0 1 0 0 1
1 0 1 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
3 5
Выходные данные
3
3 2 1 5
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Максимальное время работы на одном тесте: 1 секунда

На шахматной доске NxN в клетке (x1, y1) стоит голодный шахматный конь. Он хочет попасть в клетку (x2, y2), где растет вкусная шахматная трава. Какое наименьшее количество ходов он должен для этого сделать?

Входные данные

На вход программы поступает  пять чисел: N, x1, y1, x2, y2 (5 <= N <= 20, 1 <= x1, y1, x2, y2 <= N). Левая верхняя клетка доски имеет координаты (1, 1), правая нижняя - (N, N).

Выходные данные

В первой строке выведите единственное число K - наименьшее необходимое число ходов коня. В каждой из следующих K+1 строк должно быть записано 2 числа - координаты очередной клетки в пути коня.

Пример выходного файла ниже неполный, правильный пример такой:

4
3 3
2 1
1 3
3 2
5 1
Примеры
Входные данные
5
3 3
5 1
Выходные данные
4
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Максимальное время работы на одном тесте: 1 секунда

Дана таблица, состоящая из N строк и M столбцов. В каждой клетке таблицы записано одно из чисел: 0 или 1. Расстоянием между клетками (x1, y1) и (x2, y2) назовем сумму |x1-x2|+|y1-y2|. Вам необходимо построить таблицу, в клетке (i, j) которой будет записано минимальное расстояние между клеткой (i, j) начальной таблицы и клеткой, в которой записана 1. Гарантируется, что хотя бы одна 1 в таблице есть.

Входные данные

В первой строке вводятся два натуральных числа N и M, не превосходящих 500. Далее идут N строк по M чисел - элементы таблицы.

Выходные данные

Требуется вывести N строк по M чисел - элементы искомой таблицы.

Примеры
Входные данные
2 3
0 0 1
1 0 0
Выходные данные
1 1 0 
0 1 1 

Страница: << 18 19 20 21 22 23 24 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест