Бинарный поиск(101 задач)
Порядковые статистики(3 задач)
Поиск подстроки в строке(1 задач)
Тернарный поиск(8 задач)
"Два указателя"(18 задач)
Империя обнаружила мятежников на ледяной планете Хот! По сведениям разведки все командование Альянса Повстанцев сейчас скрывается на базе «Эхо», спрятанной в горах на севере этой суровой планеты.
Для того, чтобы окончательно подавить силы восстания, необходимо в ходе стремительной атаки уничтожить эту базу и скрывающихся на ней мятежников. К сожалению, укрытие хорошо укреплено: в частности, его защищает мощное силовое поле, препятствующее бомбардировкам с орбиты. Силовое поле имеет форму выпуклого многоугольника с вершинами в N специальных станциях-ретрансляторах. Никакие три станции не располагаются на одной прямой.
Перед тем как начинать операцию по уничтожению повстанцев, требуется лишить их базу силового поля, уничтожив эти N станций точечным бомбометанием. Однако точные координаты этих станций нам неизвестны. Ваша цель — узнать расположение станций-ретрансляторов, чтобы наши войска смогли начать наступление.
На планете введена система координат, устроенная таким образом, что все станции-ре-транс-ля-торы находятся в точках с целыми координатами, не превосходящими C по модулю.
В вашем распоряжении есть зонд-разведчик, оснащенный специальным оборудованием, позволяющим регистрировать станции-ретрансляторы. Если запустить его по прямой над базой повстанцев, по его информации можно будет узнать, сколько станций-ретрансляторов располагаются слева, и сколько — справа от прямой его движения. Станции, находящиеся на его пути, зонд не регистрирует.
С повстанцами надо расправиться как можно скорее: у вас есть время не более чем на 105 запусков этого зонда. Восстановите по полученной от него информации точные координаты станций-ретрансляторов, чтобы мы могли начать наступление, и Империя вас не забудет!
Это интерактивная задача.
При запуске решения на вход подаются два целых числа N (3 ≤ N ≤ 1 000) и C (5 ≤ C ≤ 1 000 000) — количество станций и ограничение на абсолютную величину их координат.
На каждый запуск зонда-разведчика вводится полученная им информация — два целых числа l и r, разделенных пробелом, — количество станций-ретрансляторов слева и справа от траектории его движения соответственно.
Для запуска зонда выведите строку «? x1 y1 x2 y2», где (x1, y1) и (x2, y2) — две точки с целочисленными координатами, лежащие на прямой, по которой должен лететь зонд. Зонд будет лететь в направлении от первой точки ко второй. Точки не должны совпадать. Координаты точек не должны превосходить 5C по модулю.
Как только вы найдете ответ, выведите строку «Ready!», и в следующих N строках выведите координаты станций в любом порядке. После этого ваша программа должна завершиться.
4 5
0 4
0 3
0 3
0 2
1 1
3 1
3 0
3 0
? -1 3 1 3
? -1 2 1 2
? -1 1 0 2
? -1 0 0 2
? 0 0 0 2
? 1 0 1 2
? 2 0 2 2
? 3 0 1 2
Ready!
0 -1
2 1
0 2
-1 0
В точности соблюдайте формат выходных данных. После вывода каждой строки сбрасывайте буфер вывода — для этого используйте flush(output) на языке Паскаль или Delphi, fflush(stdout) или cout.flush() в C/C++, sys.stdout.flush() на языке Python, System.out.flush() на языке Java.
Программа не должна делать более 105 запросов запуска зонда. При превышении этого количества, тест будет не пройден с вердиктом «Wrong Answer».
Тесты к этой задаче состоят из четырех групп.
Баллы за каждую группу тестов ставятся только при прохождении всех тестов группы.
4 5 -1 0 0 -1 2 1 0 2
28
На улице уже неделю лил беспросветный дождь, а Игорь все сидел дома и играл в свои любимые игрушки. Но играть так долго в одно и то же ему быстро надоело, и он пошел к родителям выпрашивать новые. Родители быстро сдались, поэтому на следующий день вся семья собралась, и они поехали в магазин игрушек.
При входе в магазин у Игоря сразу разбежались глаза. Ему хотелось и гоночную машинку, и кораблик с белыми парусами, и саблю, которая так и манила его своим блестящим лезвием. Всего в магазине продается \(N\) новых игрушек, причем так получилось, что все они плоские и имеют форму выпуклых многоугольников (действительно, на что еще можно было надеяться в магазине «Сто тысяч и один выпуклый многоугольник для детей младшего школьного возраста»?). Но строгий отец сказал, что купит Игорю только две игрушки. Игорь сразу же начал перебирать в голове варианты, но их оказалось слишком много, а если быть более конкретным, то его интересовало ровно \(Q\) вариантов выбора пары игрушек.
Любознательный Игорь сразу же задумался о тонкостях упаковки игрушек. А именно, для каждой интересующей его пары игрушек \(i\), \(j\) он хочет проделать следующие операции.
Изначально каждая игрушка лежит в своей плоской прямоугольной коробке, которая плотно прилегает к игрушке. Далее Игорь ставит эти две коробки на стол рядом друг с другом (\(i\)-ю игрушку можно поставить как левее \(j\)-й, так и правее), убирает коробки, потом придвигает игрушки друг к другу, насколько это возможно, и кладет то, что получилось, обратно в коробку (обратите внимание на рисунок). Так как Игорь очень экономный, ему нужно знать размеры получившейся коробки. Повлиять на высоту итоговой коробки, двигая игрушки параллельно плоскости стола, нельзя, так что вам нужно помочь Игорю лишь с определением минимально возможной ширины получившейся коробки.
Обратите внимание, что игрушки можно лишь двигать параллельно плоскости стола, поворачивать их каким-либо образом запрещено. Таким образом, задачу можно считать двумерной: ось \(O_x\) совпадает с плоскостью стола, а ось \(O_y\), по которой измеряется высота игрушек и коробок, перпендикулярна плоскости стола. Стороны коробок параллельны соответствующим осям координат. Диковинных игрушек в магазине предостаточно, так что они могут «стоять» на столе, в том числе и балансируя на одной вершине самым непостижимым образом.
Для лучшего понимания условия ознакомьтесь с примером и иллюстрациями к нему.
В первой строке содержится натуральное число \(N\) (1 ≤ \(N\) ≤ 100 000) - количество игрушек. Далее следуют описания \(N\) выпуклых многоугольников в следующем формате: сначала идет натуральное число \(k_m\) (3 ≤ \(k_m\) ≤ 300 000) - количество вершин в \(m\)-м многоугольнике, затем идут \(k_m\) строк, в которых записаны пары целых чисел xm,s, ym,s, по модулю не превосходящих \(10^9\) - координаты вершин \(m\)-го многоугольника в порядке обхода против часовой стрелки, заданные в системе координат соответствующей ему коробки, которая стоит на столе (это означает, что ym,s >= 0, а также для всех игрушек существует вершина \(v_m\), у которой ym,\(v_m\) = 0). Сумма всех \(k_m\) (обозначим ее за \(S\)) не превосходит 300 000.
В следующей строке записано натуральное число \(Q\) (1 ≤ \(Q\) ≤ 500 000) - число вариантов. Следующие \(Q\) строк содержат пары натуральных чисел \(i_t\), \(j_t\) (1 ≤ \(i_t\) < \(j_t\) ≤ \(N\)) - номера сдвигаемых игрушек в очередном варианте.
Выведите \(Q\) строк: для каждого варианта выбора пары одно вещественное число - необходимую ширину коробки. Ответ будет считаться правильным, если все числа посчитаны с абсолютной или относительной погрешностью не более \(10^{-9}\).
Верхний рисунок иллюстрирует исходное размещение игрушек в коробках, а нижние — варианты итогового расположения игрушек (оптимальный вариант слева).
Тесты к этой задаче состоят из четырех групп.
0. Тест 1. Тест из условия, оценивается в ноль баллов.
1. Тесты 2–20. В тестах этой группы \(k_m\) ≤ 100, \(Q\) ≤ 1 000, \(S\) ≤ 10 000. Эта группа оценивается в 25 баллов. Баллы начисляются только при прохождении всех тестов группы.
2. Тесты 21–40. В тестах этой группы \(k_m\) ≤ 300, \(Q\) ≤ 50 000, \(S\) ≤ 100 000. Эта группа оценивается в 25 баллов. Баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае про- хождения всех тестов из первой группы.
3. Тесты 41–65. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 50 баллов. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой и второй групп. Тесты в этой группе оцениваются независимо.
2 5 0 0 4 2 6 6 3 8 -2 4 5 0 0 2 0 8 4 5 11 3 12 1 1 2
14.5000000000
2 3 0 0 0 3 -1 1 3 0 0 1 0 -20 20 1 1 2
21.0000000000
Кроме Земли, пандорианцы уже много тысячелетий исследуют и другие планеты. Большой интерес для них в прошлом представляла планета Арракис. К сожалению, с началом исследований на Земле финансирование исследований на Арракисе было существенно урезано, и местным агентам-исследователям пришлось искать дополнительные источники дохода.
К счастью, пандорианцы очень хорошо разбираются в финансовых вопросах. Им не составило труда проанализировать политические, экономические и психологические тенденции, а также некоторые другие факторы, не имеющих названий на земных языках и на основе этих данных точно предсказать изменение стоимости воды на Арракисе на ближайший год. Как известно, вода на этой планете является главной ценностью после золота, на которое эту воду можно купить.
Изначально пандорианцы обладают запасом золота в 10 золотых слитков. Они решили в один из дней года купить на все это золото воды, а в какой-то последующий день продать всю купленную воду и получить прибыль за счет разницы стоимости. К примеру, если бы стоимость воды в день покупки составляла 1 литр за 4 золотых слитка, а стоимость воды в день продажи – 1 литр за 6 золотых слитков, то пандорианцы могли бы получить купить \(\frac{10}{4}=2.5\) литра воды, а продать они эту воду смогут за \(2.5 \times 6=15\) золотых слитков. Таким образом, прибыль пандорианцев составила бы \(15-10=5\) золотых слитков. Конечно же, пандорианцы хотят максимизировать свой доход в результате этих махинаций. Помогите им выбрать оптимальные дни для покупки и продажи воды!
В первой строке задано целое число 2 ≤ N ≤ 100 000 — количество дней в году на планете Арракис.
Во второй строке заданы N целых положительных чисел a i ( 1 ≤ i ≤ N , 1 ≤ a i ≤ 5000 ), задающих стоимость воды на Арракисе в день i .
Выведите два целых числа: первое число — номер дня, в который стоит купить воду, второе число — номер дня, в который следует воду продать. Дни нумеруются с единицы. Если оптимальных пар дней для покупки/продажи несколько, то выведите любую из них.
Выведите два нуля, если покупка и продажа воды по указанной схеме не принесет пандорианцам прибыли.
6 10 3 5 3 11 9
2 5
4 5 5 5 5
0 0
В воинской части города Шатров продолжаются занятия по строевой подготовке. На этот раз Андрей Юрьевич выполняет очередное задание своего начальника Павла Андреевича. Для выполнения этого задания, Андрею Юрьевичу необходимо среди всех n солдат, стоящих в одной шеренге, выбрать отряд из k высоких солдат для выполнения строительных работ. В качестве первого шага, Андрей Юрьевич приказал каждому солдату посчитать свой показатель роста. Для этого каждый солдат, стоящий в шеренге, должен посмотреть сначала в одну сторону и посчитать количество солдат в этой части шеренги, которые строго ниже его, потом посмотреть в другую сторону, посчитать такое же количество, и тогда сумма этих двух чисел и будет его показателем роста. На втором шаге, основываясь на этом показателе, Андрей Юрьевич должен выбрать отряд. Поскольку за долгие дни и ночи занятий строевой подготовкой солдаты успели хорошо познакомиться и даже подружиться со своими соседями в шеренге, Андрей Юрьевич решил выбрать в шеренге такой непрерывный подотрезок из ровно k солдат, у которого сумма показателей роста всех солдат максимальна. Обладая информацией о росте каждого солдата в шеренге, помогите Андрей Юрьевичу найти оптимальный подотрезок.
Первая строка входного файла содержит два целых числа: n и k (1 ≤ k ≤ n ≤ 100000) — количество солдат в строю и необходимый размер отряда, соответственно. Следующая строка содержит n целых чисел h i (1 ≤ h i ≤ 10 9 ) — рост i - го слева солдата в шеренге. Формат выходного файла
В выходной файл выведите одно целое число l — левый конец подотрезка из k солдат с максимальным показателем роста. Если таких отрезков несколько, выведите самый левый.
4 2 1 2 4 3
3
4 2 2 1 1 2
1
В этой задаче Вам требуется найти максимальную по длине подстроку данной строки, такую что каждый символ встречается в ней не более k раз.
В первой строке даны два целых числа n и k (1 ≤ n ≤ 100000, 1 ≤ k ≤ n ) , где n – количество символов в строке. Во второй строке n символов – данная строка, состоящая только из строчных латинских букв.
В выходной файл выведите два числа – длину искомой подстроки и номер её первого символа. Если решений несколько, выведите любое.
3 1 abb
2 1
5 2 ababa
4 1