Динамическое программирование на таблицах(46 задач)
Динамическое программирование по подстрокам(21 задач)
Задача о рюкзаке(34 задач)
Триангуляцией \(N\)-угольника называется набор из \(N\)-3 непересекающихся (кроме как в вершинах многоугольника) диагоналей, разбивающих \(N\)-угольник на \(N\)-2 треугольника.
Для заданного выпуклого \(N\)-угольника найдите триангуляцию, у которой сумма длин диагоналей, входящих в триангуляцию, минимальна.
Первая строка входных данных содержит целое число \(N\) (3≤\(N\)≤100) - количество вершин в многоугольнике. Далее идет \(N\) пар целых чисел \(x_i\), \(y_i\), не превосходящих 10000 по абсолютной величине - координаты выпуклого \(N\)-угольника в порядке обхода.
Выведите одно действительное число - минимальную суммарную длину диагоналей триангуляции с точностью не менее 6 знаков.
4 0 0 0 1 1 1 1 0
1.41421356237
Триангуляцией \(N\)-угольника называется набор из \(N\)-3 непересекающихся (кроме как в вершинах многоугольника) диагоналей, разбивающих \(N\)-угольник на \(N\)-2 треугольника.
Для заданного выпуклого \(N\)-угольника найдите триангуляцию, у которой длина самой большой диагонали, входящей в триангуляцию, минимальна.
Первая строка входных данных содержит целое число \(N\) (3≤\(N\)≤100) - количество вершин в многоугольнике. Далее идет \(N\) пар целых чисел \(x_i\), \(y_i\), не превосходящих 10000 по абсолютной величине - координаты выпуклого \(N\)-угольника в порядке обхода.
Выведите одно натуральное число - минимальное значение квадрата длины самой большой диагонали в триангуляции.
Недавно на уроке информатики ученики одного из классов изучили булевы функции. Напомним, что булева функция \(f\) сопоставляет значениям двух булевых аргументов, каждый из которых может быть равен 0 или 1, третье булево значение, называемое результатом. Для учеников, которые выразили желание более подробно изучать эту тему, учительница информатики на дополнительном уроке ввела в рассмотрение понятие цепного вычисления булевой функции \(f\).
Если задана булева функция \(f\) и набор из \(N\) булевых значений \(a_1,a_2,\ldots,a_N\), то результат цепного вычисления этой булевой функции определяется следующим образом:
* если \(N=1\), то он равен \(a_1\);
* если \(N>1\), то он равен результату цепного вычисления булевой функции \(f\) для набора из \((N-1)\) булевого значения \(f(a_1,a_2),a_3,\ldots,a_N\), который получается путём замены первых двух булевых значений в наборе из \(N\) булевых значений на единственное булево значение — результат вычисления функции \(f\) от \(a_1\) и \(a_2\).
Например, если изначально задано три булевых значения: \(a_1=0\), \(a_2=1\), \(a_3=0\), а функция \(f\) — ИЛИ (OR), то после первого шага получается два булевых значения — (0 OR 1) и 0, то есть 1 и 0. После второго (и последнего) шага получается результат цепного вычисления, равный 1, так как 1 OR 0 = 1.
В конце дополнительного урока учительница информатики написала на доске булеву функцию \(f\) и попросила одного из учеников выбрать такие \(N\) булевых значений \(a_i\), чтобы результат цепного вычисления этой функции был равен единице. Более того, она попросила найти такой набор булевых значений, в котором число единиц было бы как можно бо́льшим.
Требуется написать программу, которая решала бы поставленную учительницей задачу.
Первая строка входного файла содержит одно натуральное число \(N\) (\(2\le N\le100\,000\)).
Вторая строка входного файла содержит описание булевой функции в виде четырёх чисел, каждое из которых — ноль или единица. Первое из них есть результат вычисления функции в случае, если оба аргумента — нули, второе — результат в случае, если первый аргумент — ноль, второй — единица, третье — результат в случае, если первый аргумент — единица, второй — ноль, а четвёртый — в случае, если оба аргумента — единицы.
В выходной файл необходимо вывести строку из \(N\) символов, определяющих искомый набор булевых \(a_i\) с максимально возможным числом единиц. Если ответов несколько, требуется вывести любой из них. Если такого набора не существует, выведите в выходной файл фразу «No solution».
В первом примере процесс вычисления цепного значения булевой функции \(f\) происходит следующим образом: \(1011\to111\to01\to1\)
Во втором примере вычисление цепного значения булевой функции \(f\) происходит следующим образом: \(11111\to0111\to111\to01\to1\)
В третьем примере получить цепное значение булевой функции \(f\), равное 1, невозможно.
4 0110
1011
5 0100
11111
6 0000
No solution
Завтра Петя уезжает в кругосветное путешествие, в процессе которого собирается посетить N разных городов. Вспомнив о старинной традиции бросать монетки в фонтаны для того, чтобы когда-нибудь вернуться в это место, он решил запастись монетами заранее. Поскольку это всего лишь традиция, подумал Петя, то с него хватит оставить в каждом городе по одной копеечной монете – зачем тратиться зря?
К сожалению, копеечные монеты – достаточно редкая вещь. В частности, таковых у Пети не нашлось. Купюр и монет всех остальных достоинств у него с избытком.
С этими мыслями Петя решил прогуляться до продуктового магазина – купить в дорогу немного еды. Из всего ассортимента ему подходило M видов товара (количество товаров каждого вида неограниченно), стоимость i-го равна ai рублей bi копеек. И тут его осенило. Если покупать товары в правильной последовательности, то он довольно быстро сможет скопить так нужные ему N копеечных монет!
Процесс покупки в магазине устроен следующим образом. Петя может заказать любой набор из подходящих ему товаров (каждого товара Петя может взять сколько угодно единиц). После чего он платит за них и получает сдачу минимальным числом купюр и монет (любых монет и купюр в кассе также с избытком). Это означает, например, что если ему должны сдать 11 рублей и 98 копеек сдачи, то он получит купюру в 10 рублей, монеты в 1 рубль, 50 копеек, 4 монеты в 10 копеек, одну монету в 5 копеек и три копеечных монеты. При этом он волен вносить любую сумму (лишь бы она была не меньше требуемой для оплаты) и платить любым набором купюр и монет, имеющихся у него в распоряжении.
После этого Петя может ещё раз подойти к кассе, сделать заказ, расплатиться имеющимися наличными (можно использовать и полученные до этого со сдачей) и так далее сколько угодно раз.
Петя хочет потратить в этом магазине как можно меньше денег. Помогите ему найти оптимальный способ обретения не менее N копеечных монет с минимальными затратами.
Комментарий для нероссийских участников олимпиады.
В России используются монеты и купюры достоинством 1, 5, 10, 50 копеек и 1, 2, 5, 10, 50, 100, 500, 1000 и 5000 рублей. 1 рубль равен 100 копейкам.
Сначала вводятся целые числа N и M (0 ≤ N ≤ 108, 0 ≤ M ≤ 100) — количество городов, которые собирается посетить Петя, и количество подходящих ему видов товара. Далее идут M пар чисел ai, bi, обозначающих стоимость товара соответствующего типа (0 ≤ ai ≤ 100, 0 ≤ bi ≤ 99). Стоимость товара всегда больше нуля.
Если требуемое количество копеечных монет получить невозможно, выведите –1. Иначе выведите минимальную сумму, которую должен потратить Петя на покупку товаров, чтобы получить N однокопеечных монет. Сумма должна быть выведена как два целых числа, задающих рубли и копейки (второе число обязано быть от 0 до 99).
3 1 0 2
0 2
4 2 1 2 0 4
0 16
1 3 0 1 0 4 0 6
0 1
У Олега есть матрица целых чисел \(N \times M\). Его очень часто просят узнать сумму всех элементов матрицы в прямоугольнике с левым верхним углом (\(x_1\), \(y_1\)) и правым нижним (\(x_2\), \(y_2\)). Помогите ему в этом.
В первой строке находится числа \(N, M\) размеры матрицы (\(1 \leq N, M \leq 1000\)) и K - количество запросов (\(1 \leq K \leq 100000\)). Каждая из следующих \(N\) строк содержит по \(M\) чисел --- элементы соответствующей строки матрицы (по модулю не превосходят 1000). Последующие K строк содержат по \(4\) целых числа, разделенных пробелом - \(x_1\) \(y_1\) \(x_2\) \(y_2\) --- запрос на сумму элементов матрице в прямоугольнике (\(1 \leq x_1 \leq x_2 \leq N, 1 \leq y_1 \leq y_2 \leq M\))
Для каждого запроса на отдельной строке выведите его результат - сумму всех чисел в элементов матрице в прямоугольнике \((x_1,y_1)\), \((x_2,y_2)\)
3 3 2 1 2 3 4 5 6 7 8 9 2 2 3 3 1 1 2 3
28 21