Страница: << 26 27 28 29 30 31 32 >> Отображать по:

Напомним, что палиндромом называется строка, которая читается одинаково как слева направо, так и справа налево. Например, палиндромами являются строки «abba» и «madam».
Для произвольной строки s введем операцию деления пополам, обозначаемую half(s). Значение half(s) определяется следующими правилами:
Если s не является палиндромом, то значение half(s) не определено;
Если s имеет длину 1, то значение half(s) также не определено;
Если s является палиндромом четной длины 2m, то half(s) — это строка, состоящая из первых m символов строки s;
Если s является палиндромом нечетной длины 2m + 1, большей 1, то half(s) — это строка, состоящая из первых m + 1 символов строки s.
Например, значения half(inforamatics) и half(i) не определены, half(аbbа) = ab, half(madam) = mad. Палиндромностью строки s будем называть максимальное число раз, которое можно применить к строке s операцию деления пополам, чтобы результат был определен.
Например, палиндромность строк «informatics» и «i» равна 0, так как к ним нельзя применить операцию деления пополам даже один раз. Палиндромность строк «abba» и «madam» равна 1, а палиндромноств строки «totottotot» равна 3, посколвку операция деления пополам применима к ней три раза:
«totottotot» —> «totot» —> «tot» —> «to».
Задана некоторая строка s. Необходимо изменить в ней минимальное число символов так, чтобы ее палиндромность стала равной k.

Входные данные

Первая строка входного файла содержит число k (\(0 \leq k \leq 20\)). Вторая строка входного фай­ла содержит непустую строку s, состоящую из строчных букв латинского алфавита. Ее длина не превосходит \(10^5\) символов.

Выходные данные

В выходной файл выведите минимальное число символов, которое требуется изменить, или —1, если требуемым образом изменить строку невозможно.

Примеры
Входные данные
2
abaabc
Выходные данные
1
Входные данные
1
ababa
Выходные данные
1
Входные данные
2
aa
Выходные данные
-1
ограничение по времени на тест
3.0 second;
ограничение по памяти на тест
64 megabytes

В городе Z в час пик очень оживленное движение. Неправильно выбранный маршрут может на долгое время задержать вас в пути. Вам известно, что схема города представляет собой N горизонтальных и M вертикальных односторонних дорог, образующих прямоугольник N-1 на M-1 километр. На пересечении каждой вертикальной и горизонтальной дороги находится перекресток, на котором можно изменить направление движения. Заметьте, что для изменения направления движения нужно сначала полностью затормозить.
Вы находитесь в точке (1, 1), или другими словами, в левом нижнем углу города. Движение происходит слева направо и снизу вверх. Вам необходимо добраться до точки (N, M) за наименьшее время. Проблема в том, что на каждой дороге свой скоростной режим и максимальное ускорение, которое можно развить, разное для каждой дороги (и равно, соответственно, \(A_i\) км/\(c^2\) для вертикальной дороги с номером i и \(B_j\) км/c2 для горизонтальной дороги с номером j). При этом скорость на дорогах не ограничена. Ускорение и торможение происходит по стандартным физическим законам.
Однако ваше преимущество состоит в том, что вы хорошо знаете город и можете попасть напрямую с перекрестка (i, j) на перекресток (i+1, j+1), в объезд главных дорог (перед этим также нужно полностью затормозить). Время, необходимое для этого, не зависит от номера перекрестка и равно C. Дороги пронумерованы в порядке, соответствующем направлению движения. Напомним, что движение на всех дорогах одностороннее.

Входные данные

В первой строке входного файла расположены числа \(N\), \(M\) и \(C\) (\(1 \leq N, M \leq 1000\), \(10^{-3} \leq C \leq 10\)). Далее, во второй и третьей строках расположены числа \(A_1\), ..., \(A_N\) и \(B_1\), ..., \(B_M\), соответственно (\(10^{-3} \leq A_i, B_i \leq 10\)).

Выходные данные

В первой строке выходного файла выведите искомое время с восемью знаками после запятой. Во второй строке укажите количество перекрестков \(K\), через которые проходит маршрут, включая первый и последний. Далее, в \(K\) строчках выведите координаты соответствующих перекрестков. Выведите координаты только тех перекрестков, где нужно затормозить(учтите, что после каждого переезда по диагонали нужно затормозить).

Примеры
Входные данные
2 2 4.0
2.0 2.0
2.0 2.0
Выходные данные
2.82842712
3
1 1
1 2
2 2
ограничение по времени на тест
0.2 second;
ограничение по памяти на тест
64 megabytes

Поле размером \(N\times M\) клеток заполнено целыми числами. Требуется найти на поле клетку, из которой волна, запущенная не более чем на \(K\) итераций, покроет площадь с максимальной суммой расположенных на ней чисел.
Пример распространения волны для поля размером \(5\times 4\). Волна запущена из клетки (3, 3) и была остановлена после трех итераций. Белые клетки – клетки, не покрытые волной, серые и черные – клетки, покрытые волной. Клетки, покрытые волной на последней итерации, отмечены серым цветом.

Входные данные

В первой строке входного файла содержатся три целых числа через пробел \(N\), \(M\) и \(K\) (\(1 \leq N, M \leq 100\), \(1 \leq K \leq N + M\)). Следующие \(N\) строк содержат по \(M\) чисел, каждое из которых не превосходит \(10000\) по абсолютной величине.

Выходные данные

Выведите четыре числа \(R\), \(C\), \(P\) и \(S\), где \(R\) – номер строки, \(C\) – номер столбца, из которых следует запустить волну, \(P\) – количество итераций распространения волны, \(S\) – максимальная сумма чисел, покрытых волной. Если существует несколько вариантов ответа, то вывести любой, в котором число \(P\) минимально. \(1 \leq P \leq K\).

Оценка

Решение, верно работающее при \(N, M \leq 15\) будет получать 50 баллов. Эти баллы выставляются при прохождении всех тестов группы. В оставшихся тестах \(N, M \leq 100\), эта группа оценивается при прохождении всех тестов группы.

Примеры
Входные данные
5   4   3
1   2   3   4
1   6   7   8
9  10  11  12 
0   0   0   0
2   0   0   1
Выходные данные
3  3  3  66
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

В сервисной компании по обслуживанию системы продажи театральных билетов работают целых три инженера технической поддержки. Время от времени, в театральных кассах, расположенных в разных частях города, возникают проблемы, и необходимо, чтобы туда приехал один из инженеров.

Кассы занумерованы от \(1\) до \(L\). При поступлении нового вызова, один из инженеров едет к этой кассе из своего текущего положения (или остается там же, если он к тому моменту был в этой кассе). В одной кассе может находиться только один инженер. Вызовы должны обслуживаться в том порядке, в котором они поступают. В каждый момент времени перемещаться может только один инженер. Перемещаться инженеры могут только при вызове и только к той кассе, в которую их вызывают в данный момент. Изначально инженеры находятся в кассах 1, 2 и 3 соответственно. Перемещение инженера из кассы \(p\) в кассу \(q\) стоит \(C(p, q)\) рублей. При этом стоимость проезда из \(p\) в \(q\) и обратно может различаться. Также инженер может совершенно бесплатно оставаться в той же кассе (т.е. \(C(p, p) = 0\)). Цель компании – снизить расходы на обслуживание вызовов. Кроме этого требуется по известной последовательности вызовов определить для каждого из них, каким инженером этот вызов будет обслужен.

Входные данные

В первой строке содержаться два числа \(L\) и \(N\) (\(3 \leq L \leq 200\), \(1 \leq N \leq 1000\)) – количество касс и вызовов соответственно. В каждой из следующих \(L\) строк записано по \(L\) целых неотрицательных чисел. Число, стоящее в строке \(p+1\) входного файла и столбце \(q\), задает \(C(p, q)\). Стоимость проезда между двумя кассами – целое неотрицательное число, не превышающее 2000. После этого задано \(N\) чисел – номера касс в той последовательности, в которой происходили вызовы.

Выходные данные

Выведите в первой строке минимальную суммарную стоимость переездов. Во второй строке для каждого вызова выведите, каким инженером он будет обслужен.

Примеры
Входные данные
5 9
0 1 1 1 1
1 0 2 3 2
1 1 0 4 1
2 1 5 0 1
4 2 3 4 0
4 2 4 1 5 4 3 2 1
Выходные данные
5
1 2 1 2 2 1 3 1 3
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Антон - большой любитель компьютерных игр. Совсем недавно вышла новая игра Heroes of Keyboard and Mouse, и он, конечно же, сразу ее купил и установил на свой компьютер. Эта игра относится к жанру квестов, и поэтому ее прохождение сводится к последовательному выполнению ряда заданий (квестов).

Один из квестов, над которым Антон бьется уже не первый день состоит в том, что требуется открыть замок. Замок состоит из \(n\) шестеренок, стоящих в ряд - \(i\)-ая из шестеренок имеет \(s_i\) зубцов, на каждом из которых написано число от \(0\) до \(s_i - 1\). Первая шестеренка зацеплена только со второй, вторая зацеплена с первой и третьей, третья - со второй и четвертой, ..., \((n-1)\)-ая - с \((n-2)\)-ой и \(n\)-ой, \(n\)-ая только с \((n-1)\)-ой.

На замке имеется \(n\) окошечек и \(n\) ручек - в \(i\)-ое окошко можно видеть число, написанное на одном из зубцов \(i\)-ой шестеренки, а с помощью \(i\)-ой ручки можно поворачивать \(i\)-ую шестеренку. При этом числа на шестеренках расположены таким образом, что если до поворота \(i\)-ой из них по часовой стрелке на одно деление в \(i\)-ом окошке было видно число \(x\), то после поворота будет видно число \((x+1) \bmod s_i\). Аналогично, после поворота против часовой стрелки на одно деление вместо числа \(x\) будет видно число \((x-1+s_i) \bmod s_i\). Разумеется, если шестеренку повернуть по часовой стрелке, то непосредственно зацепленные с ней шестеренки повернутся против часовой стрелки, и наоборот, если шестеренку повернуть против часовой стрелки, то они повернутся по часовой стрелке. Слева на рис.1 показано положение шестеренок до поворота первой из них по часовой стрелке, справа на рис. 1 показано положение шестеренок после указанного поворота. Более толстыми линиями нарисован тот зубец шестеренки, число на котором видно в соответствующее окошко замка.

Изначально замок находится в состоянии, в котором в \(i\)-ое окошко видно число \(a_i\). Для того, чтобы его открыть, необходимо перевести его в состояние, в котором в \(i\)-ое окошко видно число \(b_i\).

С помощью \(i\)-ой ручки можно поворачивать \(i\)-ую шестеренку. Разумеется, если повернуть \(i\)-ую шестеренку, то придут в движение и все шестеренки, с которыми она соединена - напрямую или через другие шестеренки. Поворот любой шестеренки на одно деление занимает одну секунду. Кроме этого, если \(i\)-ая шестеренка находится в таком состоянии, что в \(i\)-ое окошко видно число \(b_i\) (то есть, она находится в положении, соответствующем требуемому состоянию замка), то ее можно вдавить, нажав на ее ручку. В результате этого \(i\)-ая шестеренка перестает быть соединенной с \((i-1)\)-ой и \((i+1)\)-ой (если, конечно, они существуют). Вдавленная шестеренка остается в таком состоянии навсегда. На то, чтобы нажать на ручку и вдавить шестеренку требуется \(k\) секунд. На рис. 2 слева показано положение шестеренок до вдавливания второй из них, а справа - после вдавливания и после поворота первой по часовой стрелке, а третьей - против. Отметим, что после вдавливания второй шестеренки первая и третья вращаются независимо друг от друга.

Для того, чтобы выполнить квест, Антону необходимо открыть замок как можно быстрее. Напишите программу, которая по описанию замка, его начального состояния и требуемого состояния, вычислит минимальное время, за которое Антон может открыть замок.

Входные данные

Первая строка входного файла содержит два целых числа: \(n\) и \(k\) (\(1 \le n \le 25\), \(1 \le k \le 100\)). Вторая строка входного файла содержит \(n\) чисел: \(s_1\), \(s_2\), ..., \(s_n\) - размеры шестеренок. Все \(s_i\) - целые числа от 3 до 10. Третья строка входного файла содержит \(n\) целых чисел \(a_1\), \(a_2\), ..., \(a_n\) - начальные положения шестеренок (для всех \(a_i\) выполняются неравенства \(0 \le a_i < s_i\)). Четвертая строка входного файла содержит \(n\) целых чисел \(b_1\), \(b_2\), ..., \(b_n\) - требуемые положения шестеренок (для всех \(b_i\) выполняются неравенства \(0 \le b_i < s_i\)).

Выходные данные

В выходной файл выведите минимальное количество времени, которое необходимо для того, чтобы открыть замок.

Примеры
Входные данные
2 2
3 5
0 0
1 1
Выходные данные
4
Входные данные
3 2
3 3 3
0 0 0
1 1 1
Выходные данные
5

Страница: << 26 27 28 29 30 31 32 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест