Динамическое программирование на таблицах(46 задач)
Динамическое программирование по подстрокам(21 задач)
Задача о рюкзаке(34 задач)
Дана сетка с \(N\) + 1 рядами и \(M\) + 1 столбцами. Черепаха находится на клетке (0, 0) и хочет попасть в клетку (\(N\), \(M\)). Черепаха может идти только вверх или вправо. На сетке в K клетках находятся ловушки. Если черепаха пойдет в одну из этих клеток, то она перевернется. У черепашки есть силы для того, чтобы встать не более чем \(T\) раз. Посчитайте, сколькими различными путями черепаха может попасть в клетку (\(N\), \(M\)). Так как это число может быть очень большим, выведите остаток от его деления на \(Z\).
В первой строке входного файла задается 5 целых чисел: \(N\), \(M\), \(K\), \(T\) и \(Z\) (\(1\) \(\le\) \(N\),\(M\) \(\le\) 300000, 0 \(\le\) \(K\), \(T\) \(\le\) 20, 1 \(\le\) \(Z\) \(\le\) \(10^9\)). В каждой из следующих \(K\) строк расположены координаты соответствующей клетки с ловушкой \(X\), \(Y\) (0 \(\le\) \(X\) \(\le\) \(N\), 0 \(\le\) \(Y\) \(\le\) \(M\)). Гарантируется, что все клетки с ловушками различные и в клетках (0, 0) и (\(N\), \(M\)) ловушек нет.
Выведите требуемое число.
1 1 1 0 100 0 1
1
2 2 0 0 10
6
У вас есть таблица c \(N\) строками и \(M\) столбцами. В каждой ячейке таблицы записана одна строчная буква английского алфавита. Рассмотрим все возможные пути от левого верхнего угла до правого нижнего угла, если вам разрешено идти только вправо и вниз. Конкатенация букв в порядке обхода составляют строку. Скажем, что эта строка значение пути. Теперь рассмотрим все такие пути и отсортируем их значения в алфавитном порядке. Ваша задача найти значение \(K\)-го пути в этом отсортированном листе.
В первой строке задается два целых числа \(N\) количество рядов и \(M\) количество столбцов заданной таблицы (1 \(\le\) \(N\), \(M\) \(\le\) 30). Каждая из следующих \(N\) строк содержит ровно \(M\) строчных букв английского алфавита. Последняя строка входного файла содержит целое число \(K\) (1 \(\le\) \(K\) \(\le\) 1018). Гарантируется, что для \(K\) ответ всегда существует.
Первая и последняя строка выходного файла должна содержат одну строку - ответ к задаче.
abcdgk, abcdgk, abcdjk, abfdgk, abfdjk, abfijk, aefdgk, aefdjk, aefijk, aehijk
3 4 abcd efdg hijk 4
abfdgk
Пафнутий и его друзья — большие любители разнообразных настольных игр. Особенно им нравятся игры, требующие как можно быстрее производить в уме непростые вычисления, поэтому абсолютным хитом их вечерних посиделок в аудиториях НУОП (Неизвестного университета олимпиадного программирования) стала игра «Шустрая черепашка». В комплект игры входят:
* Клетчатое поле из \(N\) рядов по \(M\) клеток. Каждая клетка поля либо свободна, либо блокирована для перемещения.
* Q игровых карточек. Каждая карточка содержит описание множества стартовых клеток A, множества дополнительно блокируемых клеток B и множества конечных клеток C. Множества A, B и C непусты, попарно не пересекаются и состоят из свободных клеток.
* Маленькая фишка в форме черепашки.
Правила игры очень просты. Игроки последовательно разыгрывают игровые карточки. Как только открывается очередная карточка, игрокам необходимо вычислить, сколько существует хороших троек клеток (\(a_i b_j c_k)\), где \(a_i \in A\), \(b_j \in B\), \(c_k \in C\). Тройка клеток называется хорошей, если можно провести черепашку из стартовой клетки ai в конечную клетку \(c_k\), не посещая при этом клетку \(b_j\). На перемещение черепашки наложено три условия:
1. Черепашка имеет право перемещаться только вниз и вправо в пределах поля.
2. Находиться на блокированных клетках запрещено
3. Клетка \(b_j\) также блокируется для перемещения
Так как таблицу с правильными ответами создатели не включили в комплект, в пылу игры постоянно возникают споры о правильности того или иного значения. Для установления истины ребята попросили вас посчитать ответы для данного комплекта.
Первая строка входного файла содержит два целых числа \(N\) и \(M\) (1 ≤ \(N\), \(M\) ≤ 150) — количество строк и столбцов игрового поля.
Следующие \(N\) строк по \(M\) символов описывают игровое поле в порядке следования сверху вниз, слева направо. Символ ‘.’ соответствует свободной клетке, а ‘#’ — занятой. Строки нумеруются от 1 до \(N\), столбцы — от 1 до \(M\)
Следующая строка содержит целое число \(Q\) (1 ≤ \(Q\) ≤ 100 000) — количество игровых карточек.
Далее следуют \(Q\) блоков, описывающих карточки. Каждый блок состоит из трех строк, описывающих множества \(A\), \(B\) и \(C\) соответственно. Первое число описания определяет размер соответствующего множества, после чего перечисляются его клетки. Каждая клетка задается двумя числами — номером строки и номером столбца. Все клетки в описании различны. Смотрите комментарии к примеру для лучшего понимания формата входных данных.
Гарантируется, что все множества непусты, все клетки всех множеств являются свободными и никакая клетка не принадлежит более чем одному множеству из какой-то карточки.
В выходной файл выведите ровно \(Q\) чисел по одному на строке — правильные ответы на карточки в порядке их следования во входном файле.
В приведенном примере игровой комплект содержит две карточки
Во всех тройках первой карточки черепашка стартует в верхнем левом углу и финиширует в правом нижнем. Несложно видеть, что это возможно сделать, только если из трех элементов множества \(B\) блокируется первая клетка второй строки, то есть хорошей тройкой является \((1, 1) - (2, 1) - (5, 6)\).
На второй карточке хорошими являются тройки: \((1, 2) - (3, 1) - (5, 6)\), \((2, 1) - (3, 1) - (5, 6)\), \((2, 1) - (3, 3) - (5, 1)\).
Тесты к этой задаче состоят из четырех групп
0. Тест 1. Тест из условия, оценивается в ноль баллов.
1. Тесты 2–18. В тестах этой группы \(N\) ≤ 100, \(Q\)total ≤ 1 000. Эта группа оценивается в 30 баллов. Баллы начисляются только при прохождении всех тестов группы.
2. Тесты 19–32. В тестах этой группы \(N\) ≤ 100, \(Q\)total ≤ 1 000 000. Эта группа оценивается в 30 баллов. Баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой группы.
3. В тестах этой группы дополнительные ограничения отсутствуют, однако гарантируется, что \(N\) и \(Q\)total будут равномерно возрастать с номером теста. Эта группа оценивается в 40 баллов. Решение будет тестироваться на тестах этой группы offline, т. е. после окончания тура, причем только в случае прохождения всех тестов из первой и второй групп. Тесты в этой группе оцениваются независимо.
5 6 ..##.. ....#. .#.#.. .#...# ..#... 2 1 1 1 3 2 1 2 3 4 3 1 5 6 2 1 2 2 1 2 3 1 3 3 2 5 1 5 6
1 3
Одна из проблем при игре на фортепьяно — выбор хорошей «аппликатуры», то есть определение для каждого звука мелодии (клавиши инструмента) пальца руки, которым эту ноту лучше всего сыграть в данном месте мелодии.
Пронумеруем пальцы пианиста слева направо натуральными числами от 1 до P, клавиши инструмента также пронумеруем слева направо натуральными числами от 1 до K. Тогда запись звуков мелодии можно представить в виде последовательности N номеров клавиш, которые следует нажимать для ее исполнения, где N — длина мелодии.
Пусть для каждой пары пальцев с номерами i и j заданы целые числа aij и bij, такие, что если палец i нажимает клавишу X, то следующей клавишей пальцем j может быть нажата лишь клавиша из диапазона [X + aij, X + bij]. Этот набор чисел aij, bij, 1 ≤ i ≤ P, 1 ≤ j ≤ P, зависит от особенностей пианиста и его исполнительской техники. Заметим, что не каждая мелодия может быть сыграна конкретным пианистом при указанных выше ограничениях.
Назовем перекладыванием пальцев ситуацию, когда для двух последовательно исполняемых нот мелодии клавиша с большим номером нажимается пальцем с меньшим номером. Требуется написать программу, которая для заданной мелодии определяет аппликатуру с наименьшим количеством перекладываний пальцев.
В первой строке входного файла содержится число P — количество пальцев у пианиста (1 ≤ P ≤ 20). Во второй строке записано число K — количество клавиш у инструмента (1 ≤ K ≤ 10000). В третьей строке указаны целые числа a11b11a12b12...a1Pb1Pa21b21a22b22...a2Pb2P...aP1bP1aP2bP2...aPPbPP, разделенные пробелами ( - K ≤ aij ≤ bij ≤ K). В четвертой строке находится число N — длина мелодии (1 ≤ N ≤ 1000). Пятая строка содержит N чисел X1X2...XN — последовательность разделенных пробелами номеров клавиш для исполнения мелодии.
В первой строке выходного файла должно содержаться либо число L — количество перекладываний пальцев в оптимальной аппликатуре, либо число - 1 при невозможности сыграть мелодию. Вторая строка при наличии решения должна содержать N чисел Y1...YN — последовательность разделенных пробелами номеров пальцев при исполнении мелодии.
3 10 0 0 -2 -2 -5 1 2 3 8 10 0 1 2 10 -2 -2 -1 -1 9 4 5 7 7 7 6 8 7 5
3 1 3 1 1 3 3 1 3 2
Андрей Сергеевич работает воспитателем в детском саду. Недавно он придумал новую веселую игру, для участия в которой все дети разбились на n команд. В качестве призов для участников игры Андрей Сергеевич подготовил d конфет.
По итогам игры оказалось, что в команде, занявшей i -е место, ровно x i участников.
Теперь перед Андреем Сергеевичем стоит непростая задача: надо распределить конфеты. При этом должны выполняться следующие условия:
Первая строка содержит два целых числа n и d ( 1 ≤ n ≤ 100 , 1 ≤ d ≤ 10 6 ). Вторая строка содержит n целых чисел x 1 , ..., x n ( 1 ≤ x i ≤ 100 для всех i от 1 до n ).
Если разделить конфеты возможно, то в первой строке выведите YES , а во второй выведите n целых чисел: a 1 , a 2 , ..., a n . Если разделить конфеты указанным способом нельзя, выведите NO .
2 100 2 1
YES 49 2
2 6 2 1
NO