Даны длины трёх отрезков. Если возможно, требуется построить треугольник, в котором один из этих отрезков был бы высотой, один - биссектрисой и один - медианой; все построенные из одной вершины.
Ограничения: длина каждого из трёх отрезков от 0.01 до 100, точность результата должна быть 0.001.
Вводятся три положительных числа, разделённых пробелами, - длины отрезков.
Выводится одно число - площадь треугольника. Если треугольник нельзя построить, вывести -1
. Если может быть построено несколько треугольников с разными площадями, вывести 0
.
2.4 2.424366 2.5
6
3 3 4
-1
N вражеских кораблей движутся прямолинейно с постоянными скоростями. Вакуумная бомба уничтожает все объекты в радиусе R от точки взрыва (то есть все объекты, расстояние от которых до точки взрыва не больше R). Взрывать бомбу можно только в целые моменты времени.
Требуется определить, за какое наименьшее количество взрывов можно уничтожить все корабли, а также в какие моменты времени и в каких точках для этого следует произвести взрывы. Время отсчитывается от момента, когда координаты движущихся кораблей были определены со спутника.
В первой строке входных данных задаются целые числа N (2 <= N <= 10) и R (0 < R ≤ 50. В следующих Nстроках содержится по 4 числа, описывающих движение кораблей. Первые два числа строки – координаты корабля в момент времени 0, по модулю не превосходящие 105. Следующие два числа – значения координат вектора скорости, по модулю не превосходящие 1000. Все эти числа целые.
Гарантируется, что никакие 2 корабля не имеют одинаковые векторы скорости.Однако вполне возможно, что в какой-то момент времени два корабля пройдут через одну точку.
В первой строке выведите одно число – минимальное количество взрывов K. В следующих K строках для каждого взрыва выведите по три числа: целое время взрыва и вещественные координаты взрыва, указанные с точностью не менее трех значащих цифр после точки. Разрешается производить взрывы как в разные, так и в один и тот же момент времени. Разрешается взрывы производить как в различных точках, так и в одной точке в разные моменты времени.
Если решений несколько, выведите любое из них.
Комментарий. Решения, верно работающие при N ≤ 3, будут набирать не менее 50 баллов.
3 3 -3 3 1 0 0 -6 0 2 -8 6 4 -1
1 3 2.000 1.500
2 1 -4 -4 2 2 2 2 -2 -2
2 0 -4.0000 -4.0000 0 2.0000 2.0000
На плоскости отмечено несколько точек. Требуется определить, можно ли нарисовать треугольник с вершинами в трех из этих точек, внутри которого не будет других отмеченных точек.
Сначала вводится натуральное число N, не превосходящее 100 – количество точек. Далее вводится N пар координат этих точек – целые числа, не превосходяшие 1000.
Вывести слово YES (заглавными латинскими буквами), если такой треугольник нарисовать можно и NO в противном случае.
3 1 1 2 2 3 3
NO
4 1 1 2 2 3 3 1 0
YES
Поверхность Земли в горной местности можно представить в виде ломаной линии. Вершины ломаной расположены в точках (x1, y1), (x2, y2),…,(xN, yN), при этом xi<xi+1.
Обычный горный маг находится в точке (x1, y1) и хочет попасть в точку (xN, yN). При этом он может перемещаться только пешком. Он может ходить по поверхности Земли (т.е. вдоль ломаной). А может сотворить в воздухе мост и пройти по нему. Мост может соединять две вершины ломаной: мост не может начинаться и заканчиваться не в вершине ломаной, и мост не может проходить под землей (в том числе не может быть туннелем в горе), но мост может каким-то своим участком проходить по поверхности земли. Длина моста не может быть больше R. Суммарно маг может построить не более K мостов.
Какое наименьшее расстояние придется пройти магу, чтобы оказаться в точке (xN, yN).
Вводится сначала натуральное число N (2≤N≤100). Затем водится натуральное число K (1≤K≤100) — максимальное количество мостов. Далее вводится целое число R (0≤R≤10000) — максимальная возможная длина моста. Далее вводятся координаты (x1, y1), (x2, y2),…,(xN, yN). Все координаты – целые числа, не превышающие по модулю 10000, для всех i от 1 до N–1: xi<xi+1.
Выведите одно число — минимальную длину пути, которую придется пройти магу (как по земле, так и по мостам). Ответ выведите не менее чем с 5 цифрами после десятичной точки.
Примеры
Входных данные | Выходные данные |
5 2 5 0 0 2 2 3 -1 4 1 5 0 | 6.47871 |
9 2 3 1 2 2 1 3 3 5 -1 6 2 7 0 8 1 9 0 10 1 | 14.93498 |
Джо - электрик-ковбой. Как у всех ковбоев у него есть лассо, как всем электрикам ему иногда приходиться залезать на столбы, и как все он ленив.
Вот и сейчас ему поручили проверить два стоящих на расстоянии \(d\) друг от друга столба высоты \(h_1\) и \(h_2\) соответственно. Чтобы убедиться, что все хорошо, Джо должен побывать на вершинах обоих столбов.
Электрик-ковбой посещает столбы следующим образом: сначала он выбирает один из столбов и просто взбирается на него. Выполнив все работы на вершине, он спускается по этому столбу на некоторую высоту (возможно до самой земли), достает свое лассо и цепляется им за некоторую точку второго столба (это может быть произвольная точка). После этого Джо прыгает и двигается вниз по дуге окружности с центром в точке, за которую зацепилось лассо, пока не достигнет либо другого столба, либо земли.
При этом если от начальной позиции электрика до конца его полета высота изменяется более чем на \(l\), то ковбой набирает слишком большую скорость, больно ударяется и попадает в больницу, так и не выполнив работу. Поэтому Джо всегда аккуратно выбирает параметры прыжка.
Если в результате прыжка Джо оказался
на земле, он подходит к другому столбу и взбирается на него. Если же Джо оказался на
столбе, то он взбирается на вершину из той точки, в которой он оказался.
Джо просит вас помочь ему выполнить работу, сообщив какое минимальное расстояние ему придется лезть вверх по столбам.
Входной файл содержит четыре положительных целых числа: \(d\), \(h_1\), \(h_2\) и \(l\) - расстояние между столбами, высоту первого и второго столбов и максимальный допустимый перепад высот при прыжке, соответственно. Все числа во входном файле не превышают \(10^6\).
Выведите ответ с максимальной возможной точностью. Ответ будет проверяться с точностью до \(10^{-5}\).
5 5 5 5
10.0
4 5 8 5
10.0
4 8 5 1
13.0
3 4 6 1
9.0