Глеб обожает шоппинг. Как-то раз он загорелся идеей подобрать себе майку и штаны так, чтобы выглядеть в них максимально стильно. В понимании Глеба стильность одежды тем больше, чем меньше разница в цвете элементов его одежды.
В наличии имеется N (1 ≤ N ≤ 100 000) маек и M (1 ≤ M ≤ 100 000) штанов, про каждый элемент известен его цвет (целое число от 1 до 10 000 000). Помогите Глебу выбрать одну майку и одни штаны так, чтобы разница в их цвете была как можно меньше.
Сначала вводится информация о майках: в первой строке целое число N (1 ≤ N ≤ 100 000) и во второй N целых чисел от 1 до 10 000 000 — цвета имеющихся в наличии маек. Гарантируется, что номера цветов идут в возрастающем порядке (в частности, цвета никаких двух маек не совпадают).
Далее в том же формате идёт описание штанов: их количество M (1 ≤ M ≤ 100 000) и в следующей строке M целых чисел от 1 до 10 000 000 в возрастающем порядке — цвета штанов.
Выведите пару неотрицательных чисел — цвет майки и цвет штанов, которые следует выбрать Глебу. Если вариантов выбора несколько, выведите любой из них.
2 3 4 3 1 2 3
3 3
2 4 5 3 1 2 3
4 3
На плоскости задан прямоугольник размером \(W\times H\), и \(N\) отмеченных точек внутри него. Требуется найти квадрат максимального размера:
со сторонами, параллельными сторонам прямоугольника;
не содержащий отмеченных точек строго внутри себя (но, возможно, содержащий отмеченные точки на границе);
лежащий внутри прямоугольника.
Первая строка входного файла содержит числа \(N\) — количество отмеченных точек, \(W\) — ширину прямоугольника и \(H\) — высоту прямоугольника (\(1 \leq N \leq 3 * 10^4\), \(0 \leq W, H \leq 10^6\)). Следующие \(N\) строк содержат координаты отмеченных точек \(X_i\), \(Y_i\) (целые числа, \(0 \leq X_i \leq W\), \(0 \leq Y_i \leq H\)). Система координат введена так, что вершины прямоугольника имеют координаты \((0, 0)\), \((W, 0)\), \((0, H)\), \((W, H)\).
Выведите в выходной файл одно число — длину стороны максимального искомого квадрата.
7 10 7 3 2 4 2 7 0 7 3 4 5 2 4 1 7
4
1 10 10 5 5
5
Для подготовки к чемпионату мира по футболу 2018 года создается школа олимпийского резерва. В нее нужно зачислить \(M\) юношей 1994−1996 годов рождения. По результатам тестирования каждому из \(N\) претендентов был выставлен определенный балл, характеризующий его мастерство. Все претенденты набрали различные баллы. В составе школы олимпийского резерва хотелось бы иметь \(A\) учащихся 1994 г.р., \(B\) – 1995 г.р. и \(C\) – 1996 г.р. (\(A + B + C = M\)). При этом минимальный балл зачисленного юноши 1994 г.р. должен быть больше, чем минимальный балл зачисленного 1995 г.р., а минимальный балл зачисленного 1995 г.р. должен быть больше, чем минимальный балл зачисленного 1996 г.р. Все претенденты, набравшие балл больше минимального балла для юношей своего года рождения, также должны быть зачислены.
В базе данных для каждого претендента записаны год его рождения и тестовый балл. Требуется определить, сколько нужно зачислить юношей каждого года рождения \(M_{94}\), \(M_{95}\) и \(M_{96}\) (\(M_{94} + M_{95} + M_{96} = M\)), чтобы значение величины \(F = |M_{94} − A| + |M_{95} − B| + |M_{96} − C|\) было минимально, все правила, касающиеся минимальных баллов зачисленных, были соблюдены, и должен быть зачислен хотя бы один юноша каждого требуемого года рождения.
В первой строке входного файла находится число \(K\) – количество наборов входных данных. Далее следуют описания каждого из наборов. В начале каждого набора расположены три натуральных числа \(A\), \(B\), \(C\). Во второй строке описания находится число \(N\) – количество претендентов (гарантируется, что \(N \geq A + B + C\)). В каждой из следующих \(N\) строк набора содержатся два натуральных числа – год рождения (число 1994, 1995 или 1996 соответственно) и тестовый балл очередного претендента.
Ответ на каждый тестовый набор выводится в отдельной строке. Если хотя бы одно из требований выполнить невозможно, то в качестве ответа следует вывести только число −1. В противном случае соответствующая строка сначала должна содержать минимальное значение величины \(F\), а затем три числа \(M_{94}\), \(M_{95}\) и \(M_{96}\), на которых это минимальное значение достигается, удовлетворяющие всем требованиям отбора. Если искомых вариантов несколько, то разрешается выводить любой из них.
В первом примере на первом наборе ответ не существует, потому что нельзя пригласить хотя бы одного юношу 1995 г.р. Во втором наборе ответ существует и единственный, в третьем – нельзя выполнить правило относительно минимальных баллов.
Во втором примере правильным является также ответ 2 2 2 2.
Данная задача содержит три подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.
\(K = 1\); \(N \leq 100\); каждый претендент характеризуется своим баллом от 1 до \(N\).
Сумма значений \(N\) по всем тестовым наборам не превосходит 10 000, каждый претендент характеризуется своим баллом от 1 до \(10^9\).
Сумма значений \(N\) по всем тестовым наборам не превосходит 100 000, каждый претендент характеризуется своим баллом от 1 до \(N\).
Сумма значений \(N\) по всем тестовым наборам не превосходит 300 000, каждый претендент характеризуется своим баллом в диапазоне от 1 до \(10^9\).
3 1 1 1 4 1994 3 1994 4 1996 1 1996 2 1 1 1 3 1995 2 1994 3 1996 1 1 1 1 3 1994 1 1995 2 1996 3
-1 0 1 1 1 -1
1 2 3 1 7 1996 2 1994 7 1994 4 1996 1 1995 3 1994 5 1995 6
2 3 2 1
Дядя Фёдор, кот Матроскин и Шарик решили обновить забор вокруг своего сада в Простоквашино. Матроскин и Шарик, недолго думая, вкопали \(N\) столбов вдоль одной из сторон участка. Это очень сильно расстроило Дядю Фёдора, так как его друзья забыли о самом главном — калитка должна находиться именно на этой стороне, и для неё необходимо было оставить проём шириной как минимум \(W\). Теперь им придётся выкапывать некоторые столбы.
Чтобы работа не пропадала даром, выкопать надо как можно меньше столбов. Помогите Дяде Фёдору определить, какие именно столбы надо выкопать. После выкапывания столбов должен найтись промежуток (между двумя оставшимися столбами, или между оставшимся столбом и концом стороны участка, или между двумя концами стороны участка) ширины больше или равной \(W\).
Первая строка содержит два целых числа \(N\) и \(W\) — количество вкопанных столбов и минимально необходимую ширину проёма для калитки соответственно. Гарантируется, что \(0 \leq N \leq 30\,000\) и что \(0 \leq W \leq 60\,000\).
Будем считать, что вдоль интересующей нас стороны участка введена ось координат. Во второй строке входного файла находятся два числа \(L\) и \(R\) — координаты левого и правого конца этой стороны (\(L \lt R\)). Далее следуют \(N\) чисел — координаты вкопанных столбов. Все координаты (включая \(L\) и \(R\)) — различные целые числа, по модулю не превосходящие \(30\,000\). Гарантируется, что все столбы вкопаны между левым и правым концами стороны.
В первой строке выходного файла должно быть минимальное число столбов, которые надо выкопать. Далее должны следовать номера этих столбов. Столбы нумеруются в том порядке, как они указаны во входном файле, начиная с 1.
Если решений несколько, то вы можете вывести любое. Если решения нет, то выведите в выходной файл одну строку, содержащую число -1
.
Time Limit : 0.3 секунды.
3 2 2 6 3 4 5
1 2
3 2 1 6 4 3 5
0
3 5 1 7 5 3 4
3 2 1 3