Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
В тридесятом государстве есть N деревень. Некоторые пары деревень соединены дорогами. В целях экономии, «лишних» дорог нет, т.е. из любой деревни в любую можно добраться по дорогам единственным образом.
Новейшие исследования показали, что тридесятое государство находится в сейсмически опасной зоне. Поэтому глава государства захотел узнать, какой именно ущерб может принести его державе землетрясение. А именно, он хочет узнать, какое минимальное число дорог должно быть разрушено, чтобы образовалась изолированная от остальных группа ровно изP деревень такая, что из любой деревни из этой группы до любой другой деревни из этой группы по-прежнему можно будет добраться по неразрушенным дорогам (группа изолирована от остальных, если никакая неразрушенная дорога не соединяет деревню из этой группы с деревней не из этой группы).
Вы должны написать программу, помогающую ему в этом.
Первая строка входного файла содержит два числа: N и P (1≤P≤N≤150). Все остальные строки содержат описания дорог, по одному на строке: описание дороги состоит из двух номеров деревень (от 1 до N), которые эта дорога соединяет. Все числа во входном файле разделены пробелами и/или переводами строки.
В выходной файл выведите единственное число – искомое количество дорог.
11 6 1 2 1 3 1 4 1 5 2 6 2 7 2 8 4 9 4 10 4 11
2
Решение каждой задачи заочного тура проверяется на наборе заранее заготовленных тестов. По результатам работы программы на каждом тесте участнику либо начисляются баллы за этот тест (когда программа выдала правильный ответ), либо не начисляются (когда во время работы программы произошли ошибки или выданный ответ не верен). Тесты могут иметь разную стоимость.
Дополнительные баллы начисляются участнику, если его программа прошла все тесты.
Участник может исправлять свое решение, и посылать его на проверку повторно (при этом решение проверяется на том же наборе тестов). При этом за каждую попытку из количества набранных по задаче баллов вычитается штраф, который равен 0 при 1-й попытке, а при каждой следующей возрастает на 2 (то есть 2 при второй, 4 — при третьей, 6 — при четвертой и т.д.).
Из баллов, полученных участником за каждую из попыток (с учетом начисленных штрафов), выбирается максимальный результат, который и засчитывается как результат данного участника по этой задаче. Это нужно, в частности, для того, чтобы последующие попытки не ухудшали уже полученный участником результат по задаче.
Например, если участник делает первую попытку и набирает 10 баллов, его результат по задаче равен 10 баллов. Пусть на второй попытке участник посылает решение, которое набирает 8 баллов. С учетом штрафа за эту попытку участник имеет 6 баллов, однако результат команды по задаче остается равным 10. Пусть с 3-й попытки решение набрало 20 баллов, тогда (с учетом штрафа) результат участника по задаче становится равен 16 баллам. Наконец, пусть с 4-й попытки решение проходит все тесты, тогда участник получает сумму баллов за все тесты, плюс призовые баллы за прохождение всех тестов, минус 6 баллов штрафа (если, конечно, эта величина не меньше 16 баллов, которые уже были у данного участника).
Напишите программу, которая определяет результат данного участника по этой задаче.
Во входном файле записано сначала число N — количество тестов, на которых проверяются решения данной задачи (1≤N≤100). Далее идет N натуральных чисел, не превышающих 100, — баллы, которые начисляются за прохождение каждого из тестов. Далее идет целое число из диапазона от 0 до 100 — количество баллов, которое дополнительно начисляется за прохождение всех тестов.
Далее идет натуральное число M — количество попыток сдачи задачи (1≤M≤100). После чего идет M наборов по N чисел в каждом, задающих результаты проверки каждой из M попыток сдачи задачи на тестах. 0 обозначает, что соответствующий тест не пройден, 1 — пройден.
В выходной файл выведите M чисел. i-ое число должно соответствовать результату участника после совершения им первых i попыток.
1 10 10 5 0 0 1 0 1
0 0 16 16 16
5 1 2 3 4 5 10 1 1 1 1 1 1
25
Алеша Попович и Добрыня Никитич сражаются со стаей двух- и трехголовых драконов. Они по очереди взмахивают мечами, и одним махом могут отрубить любое (по своему желанию) число голов, но только у одного дракона. Отрубивший последнюю голову у последнего дракона получает в жены прекрасную принцессу.
Кто из богатырей (начинающий или второй) может получить в жены принцессу независимо от действий другого?
Во входном файле записано два числа N и M — количество двух- и трехголовых драконов соответственно (оба числа целые из диапазона от 0 до 100).
В выходной файл выведите сначала число 1 или 2 определяющее, кто из богатырей имеет все шансы получить в жены принцессу (1 — тот, кто начинает, 2 — второй). В случае 1 выведите также все варианты его первого хода, которые к этому приводят: сначала выведите количество различных выигрышных ходов (при этом отрубание одинакового количества голов у разных двухголовых драконов считается одним и тем же ходом, так же и для трехголовых), а затем сами ходы. Каждый ход задается парой чисел: первое число определяет у сколькиголового дракона нужно отрубать головы, а второе — сколько голов нужно отрубать.
2 0
2
3 2
1 2 2 2 3 2
Карту местности условно разбили на квадраты, и посчитали среднюю высоту над уровнем моря для каждого квадрата.
Когда идет дождь, вода равномерно выпадает на все квадраты. Если один из четырех соседних с данным квадратом квадратов имеет меньшую высоту над уровнем моря, то вода с текущего квадрата стекает туда (и, если есть возможность, то дальше), если же все соседние квадраты имеют большую высоту, то вода скапливается в этом квадрате.
Разрешается в некоторых квадратах построить водостоки. Когда на каком-то квадрате строят водосток, то вся вода, которая раньше скапливалась в этом квадрате, будет утекать в водосток.
Если есть группа квадратов, имеющих одинаковую высоту и образующих связную область, то если хотя бы рядом с одним из этих квадратов есть квадрат, имеющий меньшую высоту, то вся вода утекает туда, если же такого квадрата нет, то вода стоит во всех этих квадратах. При этом достаточно построить водосток в любом из этих квадратов, и вся вода с них будет утекать в этот водосток.
Требуется определить, какое минимальное количество водостоков нужно построить, чтобы после дождя вся вода утекала в водостоки.
Во входном файле записаны сначала числа N и M, задающие размеры карты — натуральные числа, не превышающие 100. Далее идет N строк, по M чисел в каждой, задающих высоту квадратов карты над уровнем моря. Высота задается натуральным числом, не превышающим 10000. Считается, что квадраты, расположенные за пределами карты, имеют высоту 10001 (то есть вода никогда не утекает за пределы карты).
В выходной файл выведите минимальное количество водостоков, которое необходимо построить.
4 4 1 2 4 1 2 4 4 4 1 4 3 2 1 2 3 2
4
Вася коллекционирует спичечные этикетки. Для этого у него есть N альбомов вместимостью K1, K2, …, KN этикеток. Вася хочет, чтобы в случае утери одного любого альбома каждая этикетка осталась у него хотя бы в одном экземпляре. Для этого он покупает каждую этикетку в двух экземплярах, и наклеивает их в два разных альбома. Какое максимальное количество различных этикеток при этом может оказаться в его коллекции?<
Входной файл содержит сначала число N — количество альбомов, а затем N чисел K1, K2, …, KN, задающих вместимости альбомов. N — натуральное число из диапазона от 2 до 1000. Вместимость каждого альбома задается натуральным числом, суммарная вместимость всех альбомов не превышает 100000 этикеток.
В выходной файл выведите сначала число E — максимальное количество различных этикеток, которое может собрать Вася с соблюдением выдвинутого условия. Затем выведите E пар чисел — каждая пара чисел задает номера двух альбомов, куда будет вклеена очередная этикетка.
4 1 2 1 1
2 1 2 2 3