Страница: << 129 130 131 132 133 134 135 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Скоро в Берляндии пройдет очередная Олимпиада. В рамках подготовки к этому важному мероприятию Берляндолимпстрой уже возвел N объектов и теперь хочет разобраться с тем, во сколько Берляндии это обошлось.

Стройка длилась \(K + 1\) день со дня номер \(0\) по день номер \(K\), причем стоимость j-го объекта в нулевой день была равна \(a_j\) бурлям. Однако каждый следующий день стоимость каждого объекта увеличивалась согласно следующему правилу: стоимость j-го объекта в i-й день становилась равна сумме стоимостей всех объектов с номерами, меньшими или равными j, в предыдущий день. Иначе говоря, \(S_{i,j}\) = \(\sum_{m=1}^{j} S_{i-1,m}\), где \(S_{i,j}\) — стоимость j-го объекта в i-й день. В итоге на j-й объект было потрачено \(S_{K,j}\) , то есть его стоимость в последний \(K\)-й день. \t{Назовем эту величину итоговой стоимостью j-го объекта.}

Такие увеличения стоимостей проектов для Берляндии не редкость, однако оказалось, что и этих денег не хватило! Выяснилось, что в некоторый день i > 0 стоимость некоторого объекта j дополнительно повысилась на пока не известную следователям сумму X (то есть \(S_{i,j}\) = \(\sum_{m=1}^{j} S_{i-1,m}\) + X), что повлияло на стоимости объектов в последующие дни. Следователи выяснили, что из-за этого сумма итоговых стоимостей всех объектов увеличилась на \(R\) бурлей.

Помогите следователям выяснить минимально возможное значение X.

Входные данные

В первой строке входного файла содержатся три целых числа \(N\), \(K\), \(R\): количество олимпийских объектов (\(1 \le N \le 10^5\) ), количество дней увеличения стоимости объектов (\(1 \le K \le 10^5\) ) и количество бурлей, на которое незаконно возросла итоговая сумма (\(1 \le R \le 10^{18}\)). В следующей строке входного файла содержатся N целых чисел \(a_i\) — стоимости объектов в нулевой день (\(1 \le a_i \le 10^9\)).

Выходные данные

Единственная строка выходного файла должна содержать единственное целое число — минимально возможное значение \(X\)

Система оценки

Тесты к этой задаче состоят из четырех групп.

0. Тест 1. Тест из условия, оцениваемый в ноль баллов.

1. Тесты 2—25. В тестах этой группы \(N \le 10, K \le 10, a_i \le 10\), искомое значение \(X\) не превосходит \(10\). Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.

2. Тесты 26—38. В тестах этой группы \(N \le 1 000, K \le 1 000\). Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов первой группы.

3. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов. Тесты в этой группе оцениваются \t{независимо}

Примеры
Входные данные
3 3 12
1 3 3
Выходные данные
2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Как известно, автобус должен ходить по расписанию. И Иннокентий, используя свои многочисленные связи в магазине плитки, совершил невозможное: по маршруту теперь курсируют целых \(M\) автобусов, и на каждой остановке висит свое расписание, которое представляет собой набор из \(M\) времен. Плиточный магнат является крупным авторитетом в городе, поэтому расписание соблюдается: от каждой остановки ровно в каждое из указанных времен отправляется автобус. Казалось, что проблема общественного транспорта навсегда решена...

Однако, дьявол кроется в деталях. Действительно, автобусы отправляются с остановок в нужные времена, но никто не гарантирует, что между остановками не произойдет обгон, и автобус, который отправился от предыдущей остановки раньше, не отправится со следующей гораздо позже, при этом не нарушая условия, что в каждое из указанных в расписании времен какой-то автобус отправляется.

Иннокентий решил оценить масштабы трагедии. Для этого он попросил каждого из Q своих друзей сообщить маршрут, по которому они добираются до места работы. Каждый маршрут описывается тремя числами \(u_i\), \(v_i\), \(w_i\): \(u_i\) — это номер остановки, ближайшей к дому i-го друга, \(v_i\) — номер остановки, ближайшей к его работе, а \(w_i\) — номер автобуса,на котором i-й друг едет из дома на работу. При этом с точки зрения i-го друга автобусы нумеруются от \(1\) до \(M\) в том порядке, в котором они отправляются с остановки \(u_i\).

Иннокентий просит вас независимо для каждого друга определить, насколько поздно тот может доехать до конечной остановки своего маршрута.

Входные данные

В первой строке входных данных содержатся два целых числа \(N\) и \(M\) — количество остановок и количество автобусов соответственно (\(2 \le N * M \le 150 000\)). В следующей строке содержатся \(N-1\) целых чисел \(travel_1\), . . . , \(travel_{N-1}\), где \(travel_i\) — минимальное время, необходимое для перемещения между остановками i и i + 1 (\(1 \le travel_i \le 10^9\)).

В следующих \(N\) строках содержатся описания расписаний, каждое из которых представляет собой отсортированный по возрастанию список из \(M\) различных целых чисел \(t_i\) — времен, в которые автобусы должны отправляться с соответствующей остановки (\(1 \le t_i \le 10^9\)).

В следующей строке содержится число T — тип теста (1 или 2). Если T = 1, то это — обычный тест. Тогда на следующей строке содержится целое число Q — количество опрошенных друзей Иннокентия (\(1 \le Q \le 150 000 \)). Далее в Q строках содержатся описания маршрутов друзей, каждое из которых состоит из трех целых чисел \(u_i\), \(v_i\) и \(w_i\): номеров остановок, где начинается и заканчивается поездка i-го друга, и номер автобуса в расписании остановки ui, на котором эта поездка совершается (\(1 \le u_i < v_i \le N, 1 \le w_i \le M\)).

\textbf{Обратите внимание} : дальнейшее описание относится только к последней группе тестов. Если T = 2, то это — тест-серия. Тогда на следующей строке содержатся три целых числа — A, B и K (\(1 \le A, B \le 10^3 , 1 \le K \le 150\)).

В \t{тесте-серии} у Иннокентия Q = (N -1)·M ·K друзей. На каждой из N - 1 остановок, кроме последней, проживает ровно M * K друзей, причем для каждого \(w\) от 1 до M есть ровно K друзей, которые уезжают с этой остановки w-м автобусом.

Остановки, до которых едут K друзей, уезжающих с u-й остановки w-м автобусом, определяются следующим образом. Задается последовательность чисел \(q_i\): \(q_1\) = A, \(q_2\) = B, для i > 2 \(q_i\) = u * \(q_{i-1}\) + w * \(q_{i-2}\) + 42. Тогда i-й из этих K друзей будет ехать до остановки с номером \(v_i\) = u + 1 + (\(q_i\) mod (N - u)), где mod обозначает операцию взятия остатка от деления.

Выходные данные

Если это обычный тест, то выведите для каждого друга в отдельной строке единственное целое число - искомое максимальное время прибытия на конечную остановку в его маршруте. Если это тест-серия, то выведите единственное целое число — остаток от деления суммы максимальных времен прибытия для всех друзей Иннокентия на \(2^{32}\).

Примечание

Приведем пояснение ко второму тесту из условия.

Это \textbf{тест-серия}. В нем у Иннокентия 5 · 4 · 2 = 40 друзей. Например, с первой остановки вторым автобусом уезжают ровно пять друзей. Поясним, как в этом тесте для них определить конечные остановки. u = 1, w = 2. Строим последовательность \(q_i\): \(q_1\) = 9, \(q_2\) = 10, \(q_3\) = 1 · 10 + 2 · 9 + 42 = 70, \(q_4\) = 1 · 70 + 2 · 10 + 42 = 132, \(q_5\) = 1 · 132 + 2 · 70 + 42 = 314. По ней восстанавливаются конечные остановки для этих пяти друзей Иннокентия: \(v_1\) = 1 + 1 + (9 mod 4) = 3, \(v_2\) = 1 + 1 + (10 mod 4) = 4, \(v_3\) = 1 + 1 + (70 mod 4) = 4, \(v_4\) = 1 + 1 + (132 mod 4) = 2, \(v_5\) = 1 + 1 + (314 mod 4) = 4.

Система оценки

Тесты к этой задаче состоят из шести групп. Каждая группа, кроме нулевой, оценивается в 20 баллов. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов \textbf{предыдущих групп}, исключая тесты из условия. В группах тестов с первой по четвертую включительно вам предлагаются только обычные тесты.

0. Тесты 1—2. Тесты из условия, оцениваются в ноль баллов.

1. Тесты 3—12. В тестах этой группы \(N = 2, M \le 1 000, Q \le 1 000\).

2. Тесты 13—22. В тестах этой группы \(N = 2, M \le 75 000, Q \le 75 000\).

3. Тесты 23—37. В тестах этой группы \(N * M \le 150 000, N * Q \le 150 000\).

4. В тестах этой группы \(N * M \le 150 000, Q \le 150 000\).

5. В этой группе вам предлагаются только тесты-серии. Другие дополнительные ограничения отсутствуют.

Примеры
Входные данные
2 3
1
1 10 21
11 21 31
1
3
1 2 1
1 2 2
1 2 3
Выходные данные
21
21
31
Входные данные
5 2
2 5 3 4
1 3
3 5
10 11
13 14
18 23
2
9 10 5
Выходные данные
667
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Империя обнаружила мятежников на ледяной планете Хот! По сведениям разведки все командование Альянса Повстанцев сейчас скрывается на базе «Эхо», спрятанной в горах на севере этой суровой планеты.

Для того, чтобы окончательно подавить силы восстания, необходимо в ходе стремительной атаки уничтожить эту базу и скрывающихся на ней мятежников. К сожалению, укрытие хорошо укреплено: в частности, его защищает мощное силовое поле, препятствующее бомбардировкам с орбиты. Силовое поле имеет форму выпуклого многоугольника с вершинами в N специальных станциях-ретрансляторах. Никакие три станции не располагаются на одной прямой.

Перед тем как начинать операцию по уничтожению повстанцев, требуется лишить их базу силового поля, уничтожив эти N станций точечным бомбометанием. Однако точные координаты этих станций нам неизвестны. Ваша цель — узнать расположение станций-ретрансляторов, чтобы наши войска смогли начать наступление.

На планете введена система координат, устроенная таким образом, что все станции-ре-транс-ля-торы находятся в точках с целыми координатами, не превосходящими C по модулю.

В вашем распоряжении есть зонд-разведчик, оснащенный специальным оборудованием, позволяющим регистрировать станции-ретрансляторы. Если запустить его по прямой над базой повстанцев, по его информации можно будет узнать, сколько станций-ретрансляторов располагаются слева, и сколько — справа от прямой его движения. Станции, находящиеся на его пути, зонд не регистрирует.

С повстанцами надо расправиться как можно скорее: у вас есть время не более чем на 105 запусков этого зонда. Восстановите по полученной от него информации точные координаты станций-ретрансляторов, чтобы мы могли начать наступление, и Империя вас не забудет!

Входные данные

Это интерактивная задача.

При запуске решения на вход подаются два целых числа N (3 ≤ N ≤ 1 000) и C (5 ≤ C ≤ 1 000 000) — количество станций и ограничение на абсолютную величину их координат.

На каждый запуск зонда-разведчика вводится полученная им информация — два целых числа l и r, разделенных пробелом, — количество станций-ретрансляторов слева и справа от траектории его движения соответственно.

Выходные данные

Для запуска зонда выведите строку «? x1 y1 x2 y2», где (x1, y1) и (x2, y2) — две точки с целочисленными координатами, лежащие на прямой, по которой должен лететь зонд. Зонд будет лететь в направлении от первой точки ко второй. Точки не должны совпадать. Координаты точек не должны превосходить 5C по модулю.

Как только вы найдете ответ, выведите строку «Ready!», и в следующих N строках выведите координаты станций в любом порядке. После этого ваша программа должна завершиться.

Примеры

Входные данные
4 5
0 4
0 3
0 3
0 2
1 1
3 1
3 0
3 0
Выходные данные
? -1 3 1 3
? -1 2 1 2
? -1 1 0 2
? -1 0 0 2
? 0 0 0 2
? 1 0 1 2
? 2 0 2 2
? 3 0 1 2
Ready!
0 -1
2 1
0 2
-1 0

Примечание

В точности соблюдайте формат выходных данных. После вывода каждой строки сбрасывайте буфер вывода — для этого используйте flush(output) на языке Паскаль или Delphi, fflush(stdout) или cout.flush() в C/C++, sys.stdout.flush() на языке Python, System.out.flush() на языке Java.

Программа не должна делать более 105 запросов запуска зонда. При превышении этого количества, тест будет не пройден с вердиктом «Wrong Answer».

Тесты к этой задаче состоят из четырех групп.

  • Тест 1. Тест из условия, оцениваемый в ноль баллов.
  • Тесты 2–11. В тестах этой группы N = 3, C ≤ 10. Эта группа оценивается в 30 баллов.
  • Тесты 12–24. В тестах этой группы N ≤ 50, C ≤ 100. Эта группа оценивается в 30 баллов. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой группы.
  • В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой и второй группы.

Баллы за каждую группу тестов ставятся только при прохождении всех тестов группы.

Примеры
Входные данные
4 5
-1 0
0 -1
2 1
0 2
Выходные данные
28
Как известно, современные видеокарты умеют формировать изображения с использованием только треугольников. Видеокарта POBEDA-2014 не отстает от современных тенденций. Известно, что она умеет отображать только прямоугольные равнобедренные треугольники четырех типов ориентации, представленные на рисунках ниже. Изменять ориентацию этих треугольников видеокарта не может.

Длина катета каждого из представленных выше треугольников равна одному сантиметру. За один такт видеокарта не может отобразить более чем \(a_i\) треугольников \(i\)-того типа.

Необходимо определить максимально возможную длину стороны квадрата, который может быть изображен видеокартой на экране монитора за один такт. При этом квадрат должен быть расположен так, чтобы его стороны были параллельны краям монитора.

Требуется написать программу, которая решает поставленную задачу.

Формат входного файла

Первая строка входного файла содержит разделенные пробелами четыре целых числа: \(a_1\), \(a_2\), \(a_3\), \(a_4\) (0 ≤ \(a_1\), \(a_2\), \(a_3\), \(a_4\) ≤ 1018). Входные данные могут превышать максимальные значения для 32 битного типа данных.

Формат выходного файла

Выходной файл должен содержать одно число – максимально возможную длину стороны квадрата.

Пояснения к примеру

Далее приведен рисунок для первого примера.

Система оценивания

Частичные правильные решения для тестов, в которых \(a_1\), \(a_2\), \(a_3\), \(a_4\) ≤ \(10^5\), будут оцениваться из 50 баллов.

Примеры
Входные данные
2 2 2 2
Выходные данные
2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

При регистрации на портале интернет-олимпиады все участники заполняют регистрационную форму, где они указывают название школы, в которой они учатся. Разные участники могут по-разному писать название школы, например, «Физико-математическая школа №18», «ФМШ №18».

Организаторам олимпиады предоставлена информация о названиях школ, которые написали регистрируемые участники олимпиады. Точно известно, что цифры в названии школы встречаются только в номере школы, а число в записи названия школы встречается ровно один раз и оно однозначно определяет номер школы. Номер школы является положительным целым числом и не может начинаться с нуля.

Требуется написать программу для сайта интернет-олимпиады, которая поможет организаторам олимпиады получить следующую информацию: количество школ и номера школ, из которых зарегистрировалось не более пяти участников.

Формат входного файла

Первая строка входного файла содержит одно целое число n (1 ≤ \(n\) ≤ 1000) – количество названий школ, указанных всеми участниками при регистрации.

Последующие \(n\) строк содержат названия школ, указанные всеми участниками. Название школы содержит только заглавные и строчные буквы латинского алфавита, цифры и пробелы, длина названия не превышает 100 символов.

Формат выходного файла

Первая строка выходного файла должна содержать одно число \(m\) – количество школ, от которых на олимпиаду зарегистрировалось от одного до пяти участников. Последующие \(m\) строк должны содержать только номера таких школ, при этом номера должны располагаться по одному в строке в произвольном порядке.

Пояснения к примеру

В приведенном примере для участия в интернет-олимпиаде зарегистрировались: два ученика из школы с номером 18, один ученик из школы с номером 42 и шесть учеников из школы с номером 9. Таким образом, от 1 до 5 участников зарегистрировано от школ с номерами 18 и 42.

Система оценивания

Частичные правильные решения для тестов, в которых все номера школ являются однозначными числами, будут оцениваться из 30 баллов.

Частичные правильные решения для тестов, в которых номера школ – это числа строго меньше 1000, будут оцениваться из 50 баллов.

Частичные правильные решения для тестов, в которых номера школ – это числа строго меньше 109, будут оцениваться из 80 баллов.

Несмотря на выделение отдельных групп тестов, на окончательную проверку будут приниматься только решения, правильно работающие для теста из условия задачи.

Примеры
Входные данные
9
Physics and Mathematics School 18
9ya shkola imeni Pushkina
Lyceum 9
PaMS 18
Gymnasium 42
School 9
Shkola nomer 9
High school 9
School N 9
Выходные данные
2
18
42

Страница: << 129 130 131 132 133 134 135 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест