---> 405 задач <---
Страница: << 69 70 71 72 73 74 75 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Каждое утро капитан Ъ проводит занятия по строевой подготовке в возглавляемой им роте солдат. Всего в роте N солдат, каждый из которых носит форму определенного цвета. Различных цветов формы не более 26, так что для удобства солдаты обозначают цвета строчными латинскими буквами. Таким образом, каждому из \(N\) солдат соответствует буква от 'a' до 'z' — цвет его формы.

За многие месяцы службы солдаты выяснили, что капитан пребывает в наилучшем расположении духа в том случае, когда цвета формы солдат в шеренге образуют определенную последовательность. Недолго думая, они выписали соответствующую строку \(S\) из \(N\) букв на асфальте и договорились, что отныне каждый должен при построении вставать именно на ту букву, которая соответствует цвету его формы.

Но к 23 февраля солдаты решили удивить капитана и поменяться местами так, чтобы \(каждый\) солдат встал не на ту букву, которая соответствует цвету его формы. Так, солдат с цветом формы 'q' может встать на любую букву, кроме буквы 'q', иначе удивление капитана будет недостаточным.

Помогите солдатам организовать праздничное построение: по данной строке \(S\), обозначающей старую последовательность цветов, выведите строку \(T\), являющуюся перестановкой символов строки \(S\) и обозначающую новую последовательность цветов. i-й символ строки T должен отличаться от i-го символа строки \(S\).

Входные данные

В первой строке входного файла содержится единственное целое число \(N\) — количество солдат в роте \((1 \le N \le 100 000)\). Во второй строке содержится строка S, состоящая из \(N\) строчных латинских букв.

Выходные данные

Единственная строка выходного файла должна содержать искомую строку \(T\), если задумка солдат осуществима, и «Impossible» в противном случае. Если верных ответов несколько, выведите любой из них.

Система оценки

Тесты к этой задаче состоят из четырех групп. Баллы за каждую группу тестов ставятся только при прохождении всех тестов группы.

0. Тесты 1—2. Тесты из условия, оцениваются в ноль баллов.

1. Тесты 3—21. В тестах этой группы \(N \le 9\). Эта группа оценивается в 30 баллов.

2. Тесты 22—36. В тестах этой группы \(N \le 200\), а строка не может содержать никаких букв, кроме 'a', 'b' и 'c'. Эта группа оценивается в 30 баллов независимо от первой.

3. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов.

Примеры
Входные данные
9
olimpiada
Выходные данные
iapdialom
Входные данные
7
baaaaaa
Выходные данные
Impossible
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Как известно, автобус должен ходить по расписанию. И Иннокентий, используя свои многочисленные связи в магазине плитки, совершил невозможное: по маршруту теперь курсируют целых \(M\) автобусов, и на каждой остановке висит свое расписание, которое представляет собой набор из \(M\) времен. Плиточный магнат является крупным авторитетом в городе, поэтому расписание соблюдается: от каждой остановки ровно в каждое из указанных времен отправляется автобус. Казалось, что проблема общественного транспорта навсегда решена...

Однако, дьявол кроется в деталях. Действительно, автобусы отправляются с остановок в нужные времена, но никто не гарантирует, что между остановками не произойдет обгон, и автобус, который отправился от предыдущей остановки раньше, не отправится со следующей гораздо позже, при этом не нарушая условия, что в каждое из указанных в расписании времен какой-то автобус отправляется.

Иннокентий решил оценить масштабы трагедии. Для этого он попросил каждого из Q своих друзей сообщить маршрут, по которому они добираются до места работы. Каждый маршрут описывается тремя числами \(u_i\), \(v_i\), \(w_i\): \(u_i\) — это номер остановки, ближайшей к дому i-го друга, \(v_i\) — номер остановки, ближайшей к его работе, а \(w_i\) — номер автобуса,на котором i-й друг едет из дома на работу. При этом с точки зрения i-го друга автобусы нумеруются от \(1\) до \(M\) в том порядке, в котором они отправляются с остановки \(u_i\).

Иннокентий просит вас независимо для каждого друга определить, насколько поздно тот может доехать до конечной остановки своего маршрута.

Входные данные

В первой строке входных данных содержатся два целых числа \(N\) и \(M\) — количество остановок и количество автобусов соответственно (\(2 \le N * M \le 150 000\)). В следующей строке содержатся \(N-1\) целых чисел \(travel_1\), . . . , \(travel_{N-1}\), где \(travel_i\) — минимальное время, необходимое для перемещения между остановками i и i + 1 (\(1 \le travel_i \le 10^9\)).

В следующих \(N\) строках содержатся описания расписаний, каждое из которых представляет собой отсортированный по возрастанию список из \(M\) различных целых чисел \(t_i\) — времен, в которые автобусы должны отправляться с соответствующей остановки (\(1 \le t_i \le 10^9\)).

В следующей строке содержится число T — тип теста (1 или 2). Если T = 1, то это — обычный тест. Тогда на следующей строке содержится целое число Q — количество опрошенных друзей Иннокентия (\(1 \le Q \le 150 000 \)). Далее в Q строках содержатся описания маршрутов друзей, каждое из которых состоит из трех целых чисел \(u_i\), \(v_i\) и \(w_i\): номеров остановок, где начинается и заканчивается поездка i-го друга, и номер автобуса в расписании остановки ui, на котором эта поездка совершается (\(1 \le u_i < v_i \le N, 1 \le w_i \le M\)).

\textbf{Обратите внимание} : дальнейшее описание относится только к последней группе тестов. Если T = 2, то это — тест-серия. Тогда на следующей строке содержатся три целых числа — A, B и K (\(1 \le A, B \le 10^3 , 1 \le K \le 150\)).

В \t{тесте-серии} у Иннокентия Q = (N -1)·M ·K друзей. На каждой из N - 1 остановок, кроме последней, проживает ровно M * K друзей, причем для каждого \(w\) от 1 до M есть ровно K друзей, которые уезжают с этой остановки w-м автобусом.

Остановки, до которых едут K друзей, уезжающих с u-й остановки w-м автобусом, определяются следующим образом. Задается последовательность чисел \(q_i\): \(q_1\) = A, \(q_2\) = B, для i > 2 \(q_i\) = u * \(q_{i-1}\) + w * \(q_{i-2}\) + 42. Тогда i-й из этих K друзей будет ехать до остановки с номером \(v_i\) = u + 1 + (\(q_i\) mod (N - u)), где mod обозначает операцию взятия остатка от деления.

Выходные данные

Если это обычный тест, то выведите для каждого друга в отдельной строке единственное целое число - искомое максимальное время прибытия на конечную остановку в его маршруте. Если это тест-серия, то выведите единственное целое число — остаток от деления суммы максимальных времен прибытия для всех друзей Иннокентия на \(2^{32}\).

Примечание

Приведем пояснение ко второму тесту из условия.

Это \textbf{тест-серия}. В нем у Иннокентия 5 · 4 · 2 = 40 друзей. Например, с первой остановки вторым автобусом уезжают ровно пять друзей. Поясним, как в этом тесте для них определить конечные остановки. u = 1, w = 2. Строим последовательность \(q_i\): \(q_1\) = 9, \(q_2\) = 10, \(q_3\) = 1 · 10 + 2 · 9 + 42 = 70, \(q_4\) = 1 · 70 + 2 · 10 + 42 = 132, \(q_5\) = 1 · 132 + 2 · 70 + 42 = 314. По ней восстанавливаются конечные остановки для этих пяти друзей Иннокентия: \(v_1\) = 1 + 1 + (9 mod 4) = 3, \(v_2\) = 1 + 1 + (10 mod 4) = 4, \(v_3\) = 1 + 1 + (70 mod 4) = 4, \(v_4\) = 1 + 1 + (132 mod 4) = 2, \(v_5\) = 1 + 1 + (314 mod 4) = 4.

Система оценки

Тесты к этой задаче состоят из шести групп. Каждая группа, кроме нулевой, оценивается в 20 баллов. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов \textbf{предыдущих групп}, исключая тесты из условия. В группах тестов с первой по четвертую включительно вам предлагаются только обычные тесты.

0. Тесты 1—2. Тесты из условия, оцениваются в ноль баллов.

1. Тесты 3—12. В тестах этой группы \(N = 2, M \le 1 000, Q \le 1 000\).

2. Тесты 13—22. В тестах этой группы \(N = 2, M \le 75 000, Q \le 75 000\).

3. Тесты 23—37. В тестах этой группы \(N * M \le 150 000, N * Q \le 150 000\).

4. В тестах этой группы \(N * M \le 150 000, Q \le 150 000\).

5. В этой группе вам предлагаются только тесты-серии. Другие дополнительные ограничения отсутствуют.

Примеры
Входные данные
2 3
1
1 10 21
11 21 31
1
3
1 2 1
1 2 2
1 2 3
Выходные данные
21
21
31
Входные данные
5 2
2 5 3 4
1 3
3 5
10 11
13 14
18 23
2
9 10 5
Выходные данные
667
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Империя обнаружила мятежников на ледяной планете Хот! По сведениям разведки все командование Альянса Повстанцев сейчас скрывается на базе «Эхо», спрятанной в горах на севере этой суровой планеты.

Для того, чтобы окончательно подавить силы восстания, необходимо в ходе стремительной атаки уничтожить эту базу и скрывающихся на ней мятежников. К сожалению, укрытие хорошо укреплено: в частности, его защищает мощное силовое поле, препятствующее бомбардировкам с орбиты. Силовое поле имеет форму выпуклого многоугольника с вершинами в N специальных станциях-ретрансляторах. Никакие три станции не располагаются на одной прямой.

Перед тем как начинать операцию по уничтожению повстанцев, требуется лишить их базу силового поля, уничтожив эти N станций точечным бомбометанием. Однако точные координаты этих станций нам неизвестны. Ваша цель — узнать расположение станций-ретрансляторов, чтобы наши войска смогли начать наступление.

На планете введена система координат, устроенная таким образом, что все станции-ре-транс-ля-торы находятся в точках с целыми координатами, не превосходящими C по модулю.

В вашем распоряжении есть зонд-разведчик, оснащенный специальным оборудованием, позволяющим регистрировать станции-ретрансляторы. Если запустить его по прямой над базой повстанцев, по его информации можно будет узнать, сколько станций-ретрансляторов располагаются слева, и сколько — справа от прямой его движения. Станции, находящиеся на его пути, зонд не регистрирует.

С повстанцами надо расправиться как можно скорее: у вас есть время не более чем на 105 запусков этого зонда. Восстановите по полученной от него информации точные координаты станций-ретрансляторов, чтобы мы могли начать наступление, и Империя вас не забудет!

Входные данные

Это интерактивная задача.

При запуске решения на вход подаются два целых числа N (3 ≤ N ≤ 1 000) и C (5 ≤ C ≤ 1 000 000) — количество станций и ограничение на абсолютную величину их координат.

На каждый запуск зонда-разведчика вводится полученная им информация — два целых числа l и r, разделенных пробелом, — количество станций-ретрансляторов слева и справа от траектории его движения соответственно.

Выходные данные

Для запуска зонда выведите строку «? x1 y1 x2 y2», где (x1, y1) и (x2, y2) — две точки с целочисленными координатами, лежащие на прямой, по которой должен лететь зонд. Зонд будет лететь в направлении от первой точки ко второй. Точки не должны совпадать. Координаты точек не должны превосходить 5C по модулю.

Как только вы найдете ответ, выведите строку «Ready!», и в следующих N строках выведите координаты станций в любом порядке. После этого ваша программа должна завершиться.

Примеры

Входные данные
4 5
0 4
0 3
0 3
0 2
1 1
3 1
3 0
3 0
Выходные данные
? -1 3 1 3
? -1 2 1 2
? -1 1 0 2
? -1 0 0 2
? 0 0 0 2
? 1 0 1 2
? 2 0 2 2
? 3 0 1 2
Ready!
0 -1
2 1
0 2
-1 0

Примечание

В точности соблюдайте формат выходных данных. После вывода каждой строки сбрасывайте буфер вывода — для этого используйте flush(output) на языке Паскаль или Delphi, fflush(stdout) или cout.flush() в C/C++, sys.stdout.flush() на языке Python, System.out.flush() на языке Java.

Программа не должна делать более 105 запросов запуска зонда. При превышении этого количества, тест будет не пройден с вердиктом «Wrong Answer».

Тесты к этой задаче состоят из четырех групп.

  • Тест 1. Тест из условия, оцениваемый в ноль баллов.
  • Тесты 2–11. В тестах этой группы N = 3, C ≤ 10. Эта группа оценивается в 30 баллов.
  • Тесты 12–24. В тестах этой группы N ≤ 50, C ≤ 100. Эта группа оценивается в 30 баллов. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой группы.
  • В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой и второй группы.

Баллы за каждую группу тестов ставятся только при прохождении всех тестов группы.

Примеры
Входные данные
4 5
-1 0
0 -1
2 1
0 2
Выходные данные
28
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

На межрегиональной олимпиаде по программированию роботов соревнования проводятся в один тур и в необычном формате. Задачи участникам раздаются последовательно, а не все в самом начале тура, и каждая \(i\)-я задача (1 ≤ \(i\) ≤ \(n\)) становится доступной участникам в свой момент времени \(s_i\). При поступлении очередной задачи каждый участник должен сразу определить, будет он ее решать или нет. В случае, если он выбирает для решения эту задачу, то у него есть \(t_i\) минут на то, чтобы сдать ее решение на проверку, причем в течение этого времени он не может переключиться на решение другой задачи. Если же участник отказывается от решения этой задачи, то в будущем он не может к ней вернуться. В тот момент, когда закончилось время, отведенное на задачу, которую решает участник, он может начать решать другую задачу, ставшую доступной в этот же момент, если такая задача есть, или ждать появления другой задачи. При этом за правильное решение \(i\)-й задачи участник получает \(c_i\) баллов.

Артур, представляющий на межрегиональной олимпиаде один из региональных центров искусственного интеллекта, понимает, что важную роль на такой олимпиаде играет не только умение решать задачи, но и правильный стратегический расчет того, какие задачи надо решать, а какие пропустить. Ему, как и всем участникам, до начала тура известно, в какой момент времени каждая задача станет доступной, сколько времени будет отведено на ее решение и сколько баллов можно получить за ее решение. Артур является талантливым школьником и поэтому сможет успешно решить за отведенное время и сдать на проверку любую задачу, которую он выберет для решения на олимпиаде.

Требуется написать программу, которая определяет, какое максимальное количество баллов Артур сможет получить при оптимальном выборе задач, которые он будет решать, а также количество и перечень таких задач.

Формат входного файла

Первая строка входного файла содержит одно целое число \(n\) (1 ≤ \(n\) ≤ \(10^5\)) количество задач на олимпиаде.

Последующие \(n\) строк содержат описания задач, по три числа на каждой строке: \(s_i\) момент появления \(i\)-й задачи в минутах, \(t_i\) время, отведенное на ее решение в минутах, и \(c_i\) сколько баллов получит участник за решение этой задачи (1 ≤ \(s_i\), \(t_i\), \(c_i\) ≤ \(10^9\)).

Формат выходного файла

Первая строка выходного файл должна содержать одно число – максимальное количество баллов, которое сможет получить Артур на олимпиаде.

Вторая строка должна содержать одно целое число \(m\) - количество задач, которые надо решить при оптимальном выборе.

Третья строка должна содержать \(m\) разделенных пробелом целых чисел - номера этих задач в порядке их решения. Задачи пронумерованы, начиная с единицы, в порядке их описания во входном файле.

Если оптимальных ответов несколько, необходимо вывести любой из них.

Пояснения к примерам

В первом примере Артур успевает решить все задачи и получить три балла.

Во втором примере Артуру выгоднее решать последнюю задачу и получить за нее три балла, чем решать только первые две и получить два балла.

Система оценивания

Частичные правильные решения для тестов, в которых все \(c_i\) одинаковы и \(n\) ≤ 1000, оцениваются из 30 баллов.

Частичные правильные решения для тестов, в которых все \(c_i\) одинаковы, оцениваются из 50 баллов.

Частичные правильные решения для тестов, в которых \(n\) ≤ 1000, оцениваются из 50 баллов.

Примеры
Входные данные
2
1 1 1
2 2 2
Выходные данные
3
2
1 2 
Входные данные
3
1 2 1
3 2 1
2 4 3
Выходные данные
3
1
3 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

При реализации проекта «Умная школа» было решено в каждый учебный класс выбранной для этого школы установить по кондиционеру нового поколения для автоматического охлаждения и вентиляции воздуха. По проекту в каждом классе должен быть установлен только один кондиционер и мощность кондиционера должна быть достаточной для размеров класса. Чем больше класс, тем мощнее должен быть кондиционер.

Все классы школы пронумерованы последовательно от 1 до \(n\). Известно, что для каждого класса с номером \(i\), требуется ровно один кондиционер, мощность которого больше или равна \(a_i\) ватт.

Администрации школы предоставили список из \(m\) различных моделей кондиционеров, которые можно закупить. Для каждой модели кондиционера известна его мощность и стоимость. Требуется написать программу, которая определит, за какую минимальную суммарную стоимость кондиционеров можно оснастить все классы школы.

Формат входного файла

Первая строка входного файла содержит одно целое число n (1 ≤ \(n\) ≤ 50 000) количество классов в школе.

Вторая строка содержит \(n\) целых чисел \(a_i\) (1 ≤ \(a_i\) ≤ 1000)- минимальная мощность кондиционера в ваттах, который можно установить в классе с номером \(i\).

Третья строка содержит одно целое число \(m\) (1 ≤ \(m\) ≤ 50 000) - количество предложенных моделей кондиционеров.

Далее, в каждой из \(m\) строк содержится пара целых чисел \(b_j\) и \(c_j\) (1 ≤ \(b_j\) ≤ 1000, 1 ≤ \(c_j\) ≤ 1000) мощность в ваттах \(j\)-й модели кондиционера и его цена в рублях соответственно.

Формат выходного файла

Выходной файл должен содержать одно число минимальную суммарную стоимость кондиционеров в рублях. Гарантируется, что хотя бы один корректный выбор кондиционеров существует, и во всех классах можно установить подходящий кондиционер.

Пояснения к примерам

В первом примере нужно купить один единственно возможный кондиционер за 1000 рублей.

Во втором примере оптимально будет установить в первом и втором классах кондиционеры четвертого типа, а в третьем классе – кондиционер третьего типа. Суммарная стоимость этих кондиционеров будет составлять 13 рублей (3 + 3 + 7).

Система оценивания

Частичные решения для \(n\), \(m\) ≤ 1000 будут оцениваться из 50 баллов.

Примеры
Входные данные
1
800
1
800 1000
Выходные данные
1000
Входные данные
3
1 2 3
4
1 10
1 5
10 7
2 3
Выходные данные
13

Страница: << 69 70 71 72 73 74 75 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест