Темы --> Информатика --> Алгоритмы --> Алгоритмы поиска
    Линейный поиск(29 задач)
    Бинарный поиск(101 задач)
    Порядковые статистики(3 задач)
    Поиск подстроки в строке(1 задач)
    Тернарный поиск(8 задач)
    "Два указателя"(18 задач)
---> 43 задач <---
Страница: << 3 4 5 6 7 8 9 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Для подготовки к чемпионату мира по футболу 2018 года создается школа олимпийского резерва. В нее нужно зачислить \(M\) юношей 1994−1996 годов рождения. По результатам тестирования каждому из \(N\) претендентов был выставлен определенный балл, характеризующий его мастерство. Все претенденты набрали различные баллы. В составе школы олимпийского резерва хотелось бы иметь \(A\) учащихся 1994 г.р., \(B\) – 1995 г.р. и \(C\) – 1996 г.р. (\(A + B + C = M\)). При этом минимальный балл зачисленного юноши 1994 г.р. должен быть больше, чем минимальный балл зачисленного 1995 г.р., а минимальный балл зачисленного 1995 г.р. должен быть больше, чем минимальный балл зачисленного 1996 г.р. Все претенденты, набравшие балл больше минимального балла для юношей своего года рождения, также должны быть зачислены.

В базе данных для каждого претендента записаны год его рождения и тестовый балл. Требуется определить, сколько нужно зачислить юношей каждого года рождения \(M_{94}\), \(M_{95}\) и \(M_{96}\) (\(M_{94} + M_{95} + M_{96} = M\)), чтобы значение величины \(F = |M_{94} − A| + |M_{95} − B| + |M_{96} − C|\) было минимально, все правила, касающиеся минимальных баллов зачисленных, были соблюдены, и должен быть зачислен хотя бы один юноша каждого требуемого года рождения.

Входные данные

В первой строке входного файла находится число \(K\) – количество наборов входных данных. Далее следуют описания каждого из наборов. В начале каждого набора расположены три натуральных числа \(A\), \(B\), \(C\). Во второй строке описания находится число \(N\) – количество претендентов (гарантируется, что \(N \geq A + B + C\)). В каждой из следующих \(N\) строк набора содержатся два натуральных числа – год рождения (число 1994, 1995 или 1996 соответственно) и тестовый балл очередного претендента.

Выходные данные

Ответ на каждый тестовый набор выводится в отдельной строке. Если хотя бы одно из требований выполнить невозможно, то в качестве ответа следует вывести только число −1. В противном случае соответствующая строка сначала должна содержать минимальное значение величины \(F\), а затем три числа \(M_{94}\), \(M_{95}\) и \(M_{96}\), на которых это минимальное значение достигается, удовлетворяющие всем требованиям отбора. Если искомых вариантов несколько, то разрешается выводить любой из них.

Комментарий

В первом примере на первом наборе ответ не существует, потому что нельзя пригласить хотя бы одного юношу 1995 г.р. Во втором наборе ответ существует и единственный, в третьем – нельзя выполнить правило относительно минимальных баллов.

Во втором примере правильным является также ответ 2 2 2 2.

Подзадачи и система оценки

Данная задача содержит три подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.

Подзадача 1 (25 баллов)

\(K = 1\); \(N \leq 100\); каждый претендент характеризуется своим баллом от 1 до \(N\).

Подзадача 2 (25 баллов)

Сумма значений \(N\) по всем тестовым наборам не превосходит 10 000, каждый претендент характеризуется своим баллом от 1 до \(10^9\).

Подзадача 3 (25 баллов)

Сумма значений \(N\) по всем тестовым наборам не превосходит 100 000, каждый претендент характеризуется своим баллом от 1 до \(N\).

Подзадача 4 (25 баллов)

Сумма значений \(N\) по всем тестовым наборам не превосходит 300 000, каждый претендент характеризуется своим баллом в диапазоне от 1 до \(10^9\).

Примеры
Входные данные
3
1 1 1
4
1994 3
1994 4
1996 1
1996 2
1 1 1
3
1995 2
1994 3
1996 1
1 1 1
3
1994 1
1995 2
1996 3
Выходные данные
-1
0 1 1 1
-1
Входные данные
1
2 3 1
7
1996 2
1994 7
1994 4
1996 1
1995 3
1994 5
1995 6
Выходные данные
2 3 2 1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Велосипедисты, участвующие в шоссейной гонке, в некоторый момент времени, который называется начальным, оказались в точках, удалённых от места старта на \(x_1\), \(x_2\), ..., \(x_n\) метров (\(n\) – общее количество велосипедистов). Каждый велосипедист двигается со своей постоянной скоростью \(v_1\), \(v_2\), ..., \(v_n\) метров в секунду. Все велосипедисты двигаются в одну и ту же сторону.

Репортёр, освещающий ход соревнований, хочет определить момент времени, в который расстояние между лидирующим в гонке велосипедистом и замыкающим гонку велосипедистом станет минимальным, чтобы с вертолёта сфотографировать сразу всех участников велогонки.

Требуется написать программу, которая по заданному количеству велосипедистов \(n\), заданным начальным положениям велосипедистов \(x_1\), \(x_2\), ..., \(x_n\) и их скоростям \(v_1\), \(v_2\), ..., \(v_n\), вычислит момент времени \(t\), в который расстояние \(l\) между лидирующим и замыкающим велосипедистом будет минимальным.

Входные данные

Первая строка входного файла содержит целое число \(n\) – количество велосипедистов.

В последующих n строках указаны по два целых числа: \(x_i\) – расстояние от старта до \(i\)-го велосипедиста в начальный момент времени (\(0 \leq x_i \leq 10^7\)) и \(v_i\) – его скорость (\(0 \leq v_i \leq 10^7\)).

Выходные данные

В выходной файл необходимо вывести два вещественных числа: \(t\) – время в секундах, прошедшее от начального момента времени до момента, когда расстояние в метрах между лидером и замыкающим будет минимальным, \(l\) – искомое расстояние.

Числа t и l должны иметь абсолютную или относительную погрешность не более \(10^{–6}\), что означает следующее. Пусть выведенное число равно \(x\), а в правильном ответе оно равно \(y\). Ответ будет считаться правильным, если значение выражения \(|x – y| / max(1, |y|)\) не превышает \(10^{–6}\).

Подзадачи и система оценки

Данная задача содержит четыре подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.

Подзадача 1 (20 баллов)

\(2 \leq n \leq 50\), \(0 \leq  x_i \leq 1000\), \(0 \leq v_i \leq 1000\). Гарантируется, что существует ответ, в котором \(t\) – целое число, не превышающее 1000.

Подзадача 2 (20 баллов)

\(2 \leq n \leq 200\).

Подзадача 3 (30 баллов)

\(2 \leq n \leq 2000\)

Подзадача 4 (30 баллов)

\(2 \leq n \leq 10^5\)

Примеры
Входные данные
3
0 40
30 10
40 30
Выходные данные
1 30
Входные данные
5
90 100
100 70
100 70
110 60
120 35
Выходные данные
0.5 5.000000000000
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

На планете Плюк открылся новый космический кегельбан. Поле для кегельбана представляет собой бесконечную плоскость, на которой расставлены кегли.

Каждая кегля представляет собой высокий цилиндр с основанием в виде круга радиусом r метров. Все кегли одинаковые. Кегли расставлены по следующим правилам. Кегли образуют n рядов, в первом ряду стоит одна кегля, во втором — две, и так далее. В последнем n-м ряду стоит n кеглей. Введем на плоскости систему координат таким образом, чтобы единица измерения была равна одному километру. Центр единственной кегли в первом ряду находится в точке (0, 0). Центры кеглей во втором ряду находятся в точках (–1, 1) и (1, 1). Таким образом, центры кеглей в i-м ряду находятся в точках с координатами (–(i  1), i  1), (–( i  3), i  1), …, (i  1, i  1).

Игра происходит следующим образом. Используется шар с радиусом q метров. Игрок выбирает начальное положение центра шара (xc,  yc) и вектор направления движения шара (vx, vy). После этого шар помещается в начальную точку и двигается, не останавливаясь, в направлении вектора (vx, vy). Считается, что шар сбил кеглю, если в процессе движения шара имеет место ситуация, когда у шара и кегли есть общая точка. Сбитые кегли не меняют направления движения шара и не сбивают соседние кегли при падении.

На рисунке приведен пример расположения кеглей для r = 500, n = 4 и шара для q = 1000, xc = –2, yc = –2, vx = 1, vy = 1.

Требуется написать программу, которая по заданным радиусу кегли r, количеству рядов кеглей n, радиусу шара q, его начальному положению ( xc, yc) и вектору направления движения (vx,  vy) определяет количество кеглей, сбитых шаром.

Входные данные

Первая строка входного файла содержит два целых числа: r и n, разделенных ровно одним пробелом (1 ≤ r ≤ 700, 1  ≤ n ≤ 200 000).

Вторая строка входного файла содержит целое число q (1  ≤ q ≤ 109).

Третья строка входного файла содержит два целых числа xc и yc, разделенных ровно одним пробелом (–106≤ xc ≤ 106, –10 6≤ yc, 1000 ×yc < –(r + q) ).

Четвертая строка входного файла содержит два целых числа vx и vy, разделенных ровно одним пробелом (–106≤ vx ≤ 106, 0  < vy  106).

Выходные данные

Выходной файл должен содержать одно целое число — количество сбитых кеглей.

Примечание

Рисунок ниже показывает, какие кегли будут сбиты (такие кегли обозначены «х»).

Система оценки

Потестовая.

Примеры
Входные данные
500 4
1000
-2 -2
1 1
Выходные данные
7
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Строка s называется супрефиксом для строки t, если t начинается с s и заканчивается на s. Например, «abra» является супрефиксом для строки «abracadabra». В частности, сама строка t является своим супрефиксом. Супрефиксы играют важную роль в различных алгоритмах на строках.

В этой задаче требуется решить обратную задачу о поиске супрефикса, которая заключается в следующем. Задан словарь, содержащий n слов t1, t2, …, tn и набор из m строк-образцов s1, s2, …, sm. Необходимо для каждой строки-образца из заданного набора найти количество слов в словаре, для которых эта строка-образец является супрефиксом.

Требуется написать программу, которая по заданному числу n, n словам словаря t1, t2, …, tn, заданному числу m и m строкам-образцам s1, s2, …, sm вычислит для каждой строки-образца количество слов из словаря, для которых эта строка-образец является супрефиксом.

Входные данные

Первая строка входного файла содержит целое число n (1 ≤ n ≤ 200 000).

Последующие n строк содержат слова t1, t2, …, tn, по одному слову в каждой строке. Каждое слово состоит из строчных букв латинского алфавита. Длина каждого слова не превышает 50. Суммарная длина всех слов не превышает 106. Словарь не содержит пустых слов.

Затем следует строка, содержащая целое число m (1 ≤ m ≤ 200 000).

Последующие m строк содержат строки-образцы s1, s2, …, sm, по одной на каждой строке. Каждая строка-образец состоит из строчных букв латинского алфавита: Длина каждой строки-образца не превышает 50. Суммарная длина всех строк-образцов не превышает 106. Никакая строка-образец не является пустой строкой.

Выходные данные

Выходной файл должен содержать m чисел, по одному на строке.

Для каждой строки-образца в порядке, в котором они заданы во входном файле, следует вывести количество слов словаря, для которых она является супрефиксом.

Система оценки

Решения, работающие при \(n\), \(m\) не превосходящими 100 оцениваются из 30 баллов.

Примеры
Входные данные
4
abacaba
abracadabra
aa
abra
3
a
abra
abac
Выходные данные
4
2
0
ограничение по времени на тест
0.3 second;
ограничение по памяти на тест
256 megabytes

Дядя Фёдор, кот Матроскин и Шарик решили обновить забор вокруг своего сада в Простоквашино. Матроскин и Шарик, недолго думая, вкопали \(N\) столбов вдоль одной из сторон участка. Это очень сильно расстроило Дядю Фёдора, так как его друзья забыли о самом главном — калитка должна находиться именно на этой стороне, и для неё необходимо было оставить проём шириной как минимум \(W\). Теперь им придётся выкапывать некоторые столбы.

Чтобы работа не пропадала даром, выкопать надо как можно меньше столбов. Помогите Дяде Фёдору определить, какие именно столбы надо выкопать. После выкапывания столбов должен найтись промежуток (между двумя оставшимися столбами, или между оставшимся столбом и концом стороны участка, или между двумя концами стороны участка) ширины больше или равной \(W\).

Входные данные

Первая строка содержит два целых числа \(N\) и \(W\) — количество вкопанных столбов и минимально необходимую ширину проёма для калитки соответственно. Гарантируется, что \(0 \leq N \leq 30\,000\) и что \(0 \leq W \leq 60\,000\).

Будем считать, что вдоль интересующей нас стороны участка введена ось координат. Во второй строке входного файла находятся два числа \(L\) и \(R\) — координаты левого и правого конца этой стороны (\(L \lt R\)). Далее следуют \(N\) чисел — координаты вкопанных столбов. Все координаты (включая \(L\) и \(R\)) — различные целые числа, по модулю не превосходящие \(30\,000\). Гарантируется, что все столбы вкопаны между левым и правым концами стороны.

Выходные данные

В первой строке выходного файла должно быть минимальное число столбов, которые надо выкопать. Далее должны следовать номера этих столбов. Столбы нумеруются в том порядке, как они указаны во входном файле, начиная с 1.

Если решений несколько, то вы можете вывести любое. Если решения нет, то выведите в выходной файл одну строку, содержащую число -1.

Примечание

Time Limit : 0.3 секунды.

Примеры
Входные данные
3 2
2 6
3 4 5
Выходные данные
1
2
Входные данные
3 2
1 6
4 3 5
Выходные данные
0
Входные данные
3 5
1 7
5 3 4
Выходные данные
3
2
1
3

Страница: << 3 4 5 6 7 8 9 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест