---> 85 задач <---
Страница: << 11 12 13 14 15 16 17 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

У вас есть таблица c \(N\) строками и \(M\) столбцами. В каждой ячейке таблицы записана одна строчная буква английского алфавита. Рассмотрим все возможные пути от левого верхнего угла до правого нижнего угла, если вам разрешено идти только вправо и вниз. Конкатенация букв в порядке обхода составляют строку. Скажем, что эта строка  значение пути. Теперь рассмотрим все такие пути и отсортируем их значения в алфавитном порядке. Ваша задача найти значение \(K\)-го пути в этом отсортированном листе.

Входные данные

В первой строке задается два целых числа \(N\)  количество рядов и \(M\)  количество столбцов заданной таблицы (1 \(\le\) \(N\), \(M\) \(\le\) 30). Каждая из следующих \(N\) строк содержит ровно \(M\) строчных букв английского алфавита. Последняя строка входного файла содержит целое число \(K\) (1 \(\le\) \(K\) \(\le\) 1018). Гарантируется, что для \(K\) ответ всегда существует.

Выходные данные

Первая и последняя строка выходного файла должна содержат одну строку - ответ к задаче.

Пояснения к примеру

abcdgk, abcdgk, abcdjk, abfdgk, abfdjk, abfijk, aefdgk, aefdjk, aefijk, aehijk

Примеры
Входные данные
3 4
abcd
efdg
hijk
4
Выходные данные
abfdgk
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

В одном известном всем городе скоро стартуют Зимние Олимпийские игры. В связи с этим организаторы игр решили провести эстафету Олимпийского огня — самую продолжительную и масштабную в истории Олимпийских игр. Эстафета состоит из N этапов, каждый длиной ai километров (1 ≤ i ≤ N). У организаторов имеется бесконечное количество олимпийских факелов, каждый из которых может непрерывно гореть на протяжении K километров забега. По правилам эстафеты каждый факел используется только один раз. В начале каждого этапа участникам эстафеты выдаётся некоторое число факелов, такое, чтобы олимпийский огонь удалось донести до конца этапа. По окончании этапа все использованные (полностью или частично) факелы передаются в дар своим факелоносцам.

В процессе подготовки эстафеты выяснилось, что последовательно идущие этапы можно объединить в один этап, и таким образом на проведение эстафеты потребуется меньше факелов. Однако по соображениям техники безопасности нельзя объединять больше, чем M подряд идущих этапов.

Напишите программу, которая по известной схеме эстафеты Олимпийского огня определяет, какое максимальное число факелов можно «сэкономить» и какие этапы для этого нужно объединить.

Входные данные

В первой строке заданы 3 натуральных числа N, M и K (N ≤ 106, M ≤ 10, K ≤ 108).

Во второй строке заданы N натуральных чисел ai (ai ≤ 109).

Выходные данные

В первой строке выведите одно натуральное число F — на сколько можно максимально сократить количество используемых факелов на протяжении всей эстафеты.

Во второй строке выведите одно натуральное число P — количество групп объединённых этапов.

Затем в P строках выведите сами группы — по 2 натуральных числа si и ci, где si — номер первого этапа в группе, а ci — количество этапов в группе. Все si должны идти в порядке возрастания, а ci не превосходить M. Если существует несколько оптимальных решений, разрешается вывести любое.

Примеры тестов

Входные данные
5 3 3
1 1 1 3 3
Выходные данные
2
1
1 3
Входные данные
6 3 3
1 1 1 1 1 1
Выходные данные
4
2
1 3
4 3
Входные данные
5 5 2
2 4 6 8 10
Выходные данные
0
0

ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Пафнутий и его друзья — большие любители разнообразных настольных игр. Особенно им нравятся игры, требующие как можно быстрее производить в уме непростые вычисления, поэтому абсолютным хитом их вечерних посиделок в аудиториях НУОП (Неизвестного университета олимпиадного программирования) стала игра «Шустрая черепашка». В комплект игры входят:

* Клетчатое поле из \(N\) рядов по \(M\) клеток. Каждая клетка поля либо свободна, либо блокирована для перемещения.

* Q игровых карточек. Каждая карточка содержит описание множества стартовых клеток A, множества дополнительно блокируемых клеток B и множества конечных клеток C. Множества A, B и C непусты, попарно не пересекаются и состоят из свободных клеток.

* Маленькая фишка в форме черепашки.

Правила игры очень просты. Игроки последовательно разыгрывают игровые карточки. Как только открывается очередная карточка, игрокам необходимо вычислить, сколько существует хороших троек клеток (\(a_i b_j c_k)\), где \(a_i \in A\), \(b_j \in B\), \(c_k \in C\). Тройка клеток называется хорошей, если можно провести черепашку из стартовой клетки ai в конечную клетку \(c_k\), не посещая при этом клетку \(b_j\). На перемещение черепашки наложено три условия:

1. Черепашка имеет право перемещаться только вниз и вправо в пределах поля.

2. Находиться на блокированных клетках запрещено

3. Клетка \(b_j\) также блокируется для перемещения

Так как таблицу с правильными ответами создатели не включили в комплект, в пылу игры постоянно возникают споры о правильности того или иного значения. Для установления истины ребята попросили вас посчитать ответы для данного комплекта.

Формат входного файла

Первая строка входного файла содержит два целых числа \(N\) и \(M\) (1 ≤ \(N\), \(M\) ≤ 150) — количество строк и столбцов игрового поля.

Следующие \(N\) строк по \(M\) символов описывают игровое поле в порядке следования сверху вниз, слева направо. Символ ‘.’ соответствует свободной клетке, а ‘#’ — занятой. Строки нумеруются от 1 до \(N\), столбцы — от 1 до \(M\)

Следующая строка содержит целое число \(Q\) (1 ≤ \(Q\) ≤ 100 000) — количество игровых карточек.

Далее следуют \(Q\) блоков, описывающих карточки. Каждый блок состоит из трех строк, описывающих множества \(A\), \(B\) и \(C\) соответственно. Первое число описания определяет размер соответствующего множества, после чего перечисляются его клетки. Каждая клетка задается двумя числами — номером строки и номером столбца. Все клетки в описании различны. Смотрите комментарии к примеру для лучшего понимания формата входных данных.

Гарантируется, что все множества непусты, все клетки всех множеств являются свободными и никакая клетка не принадлежит более чем одному множеству из какой-то карточки.

Формат выходного файла

В выходной файл выведите ровно \(Q\) чисел по одному на строке — правильные ответы на карточки в порядке их следования во входном файле.

Комментарии

В приведенном примере игровой комплект содержит две карточки

Во всех тройках первой карточки черепашка стартует в верхнем левом углу и финиширует в правом нижнем. Несложно видеть, что это возможно сделать, только если из трех элементов множества \(B\) блокируется первая клетка второй строки, то есть хорошей тройкой является \((1, 1) - (2, 1) - (5, 6)\).

На второй карточке хорошими являются тройки: \((1, 2) - (3, 1) - (5, 6)\), \((2, 1) - (3, 1) - (5, 6)\), \((2, 1) - (3, 3) - (5, 1)\).

Система оценивания

Тесты к этой задаче состоят из четырех групп

0. Тест 1. Тест из условия, оценивается в ноль баллов.

1. Тесты 2–18. В тестах этой группы \(N\) ≤ 100, \(Q\)total ≤ 1 000. Эта группа оценивается в 30 баллов. Баллы начисляются только при прохождении всех тестов группы.

2. Тесты 19–32. В тестах этой группы \(N\) ≤ 100, \(Q\)total ≤ 1 000 000. Эта группа оценивается в 30 баллов. Баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой группы.

3. В тестах этой группы дополнительные ограничения отсутствуют, однако гарантируется, что \(N\) и \(Q\)total будут равномерно возрастать с номером теста. Эта группа оценивается в 40 баллов. Решение будет тестироваться на тестах этой группы offline, т. е. после окончания тура, причем только в случае прохождения всех тестов из первой и второй групп. Тесты в этой группе оцениваются независимо.

Примеры
Входные данные
5 6
..##..
....#.
.#.#..
.#...#
..#...
2
1 1 1
3 2 1 2 3 4 3
1 5 6
2 1 2 2 1
2 3 1 3 3
2 5 1 5 6
Выходные данные
1
3
ограничение по времени на тест
0.5 second;
ограничение по памяти на тест
64 megabytes

Дана последовательность попарно различных чисел A = [ A 1 , A 2 , ..., A N ] , требуется переставить числа так, чтобы было верно A 1 < A 2 < ... < A m > A m + 1 > ... > A N (где m лежит между 1 и N включительно) Переставлять можно только пары соседних чисел, требуется минимизировать количество обменов.

1 ≤ A i ≤ 10 9 1 ≤ N ≤ 1000 A i попарно различны.

В задаче есть две группы тестов:

1. 1 ≤ N ≤ 10 - оценивается в 35 баллов

2. 1 ≤ N ≤ 1000 - оценивается в 65 баллов

Входные данные

В первой строке число N . Вторая строка содержит N чисел: A 1 , ..., A N .

Выходные данные

Выведите одно число - минимальное количество обменов

Примеры
Входные данные
3
1 2 3
Выходные данные
0
Входные данные
5
1 8 10 3 7
Выходные данные
1
ограничение по времени на тест
0.5 second;
ограничение по памяти на тест
32 megabytes

Петар организует вечеринку по случаю своего дня рождения и планирует пригласить некоторых сотрудников из компании, где он работает генеральным директором. Каждый сотрудник, включая Петара, имеет уникальный номер от 1 до N и тип шуток, которые он рассказывает, V i . Также, каждый сотрудник в компании кроме Петара имеет ровно одного начальника. Так как Петар - генеральный директор компании, он имеет номер 1 и руководит всеми сотрудниками (не обязательно напрямую).

На вечеринке есть некоторые правила, которым должны отвечать все присутствующие: 1. На вечеринке не должно быть двух людей с одинаковым типом шуток. 2. Человек не может быть приглашен на вечеринку, если на нее не приглашен его прямой начальник. 3. Человек не может быть приглашен на вечеринку, если типы шуток, которые рассказывает он и его приглашенные подчиненные, не образуют последовательное множество.

Петар хочет знать, сколько возможных наборов типов шуток может быть на его вечеринке, если он пригласит людей в соответствии с вышеуказанными правилами.

Последовательное множество - такое множество, в котором, если отсортировать его по возрастанию, разность между соседними элементами будет равна 1. Например (3, 1, 2) и (5, 1, 2, 4, 3) - последовательные множества, а (2, 5, 3) - нет.

Входные данные

Первая строка содержит одно целое число N ( 1 ≤ N ≤ 10000 ). Вторая строка содержит N целых чисел V i - типы шуток, рассказываемые i -м человеком ( 1 ≤ V i ≤ 100 ). Каждая из следующих N - 1 строк содержит два целых числа A и B ( 1 ≤ A , B N ), обозначающих что сотрудник с номером A является прямым начальником сотрудника с номером B .

Выходные данные

Выведите единственное число - количество возможных наборов типов шуток на вечеринке.

Примеры
Входные данные
4
2 1 3 4
1 2
1 3
3 4
Выходные данные
6
Входные данные
4
3 4 5 6
1 2
1 3
2 4
Выходные данные
3
Входные данные
6
5 3 6 4 2 1
1 2
1 3
1 4
2 5
5 6
Выходные данные
10

Страница: << 11 12 13 14 15 16 17 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест