---> 264 задач <---
Страница: << 12 13 14 15 16 17 18 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Яблоки в форме окружностей задаются радиусом и верхней точкой. Одно из яблок начинает падать. Если яблоко при падении задевает другое яблоко, то второе также начинает падать. Необходимо определить, какие яблоки упадут.

У Пети в саду растет яблоня. Воодушевленный историей об Исааке Ньютоне, который, как известно, открыл закон всемирного тяготения после того, как ему на голову упало яблоко, Петя с целью повысить свою успеваемость по физике часто сидит под яблоней.

Однако, поскольку по физике у Пети твердая тройка, яблоки с его яблони падают следующим образом. В какой-то момент одно из яблок отрывается от ветки, на которой оно висит, и начинает падать строго вниз. Если в некоторый момент оно задевает другое яблоко, то то тоже отрывается от своей ветки и начинает падать вниз, при этом первое яблоко не меняет направление своего падения. Вообще, если любое падающее яблоко заденет другое яблоко на своем пути, то оно также начнет падать.

Таким образом, в любой момент каждое яблоко либо висит на ветке, либо падает строго вниз, причем все яблоки кроме первого, чтобы начать падать, должны сначала соприкоснуться с каким-либо другим падающим яблоком.

Выясните, какие яблоки упадут с Петиной яблони.

Входные данные

В первой строке вводится число \(N\) - количество яблок на Петиной яблоне (1 <= \(N\) <= 200). Следующие \(N\) строк содержат описания яблок. Будем считать все яблоки шарами. Каждое яблоко задается координатами своей самой верхней точки (той, где оно исходно прикреплено к дереву, длиной черенка пренебрежем) \(x_i\), \(y_i\) и \(z_i\) и радиусом \(r_i\) ( -10000 <= \(x_i\), \(y_i\), \(z_i\) <= 10000, 1 <= \(r_i\) <= 10000, все числа целые). Гарантируется, что изначально никакие яблоки не пересекаются (даже не соприкасаются). Ось OZ направлена вверх.

Выходные данные

В первой строке выведите количество яблок, которые упадут с яблони, если начнет падать первое яблоко. В следующей строке выводите номера упавших яблок. Яблоки нумеруются, начиная с 1, в том порядке, в котором они заданы во входных данных.

Примеры
Входные данные
4
0 0 10 4
5 0 3 1
-7 4 7 1
0 1 2 6
Выходные данные
3
1 2 4 
#551
  
Темы: [Остатки]
Источники: [ Командные олимпиады, ВКОШП, 2001, Задача G ]
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Дана последовательность чисел A1, ..., An. Требуется построить последовательность B, где B1 = (An+Bn) mod M, B2 = (A1+B1), ..., Bn = (An-1 + Bn-1).

Фирма Macrohard разработала новый протокол обмена данными по сети. Каждый блок данных при этом обмене состоит из \(N\) чисел в диапазоне от 0 до \(M\)-1 включительно. Чтобы повысить надежность передачи, вместе с блоком данных пересылается контрольный блок такой же длины.

Предположим, что исходный блок состоит из чисел \(a_1\), \(a_2\),…,\(a_N\). Тогда, контрольный блок состоит из чисел \(b_1\), \(b_2\),…,\(b_N\), из диапазона от 0 до \(M\)-1 включительно таких, что выполняются следующие равенства: \(b_1\) = (\(a_N\) + \(b_N\)) mod \(M\), \(b_2\) = (\(a_1\) + \(b_1\)) mod \(M\), ... , \(b_N\) = (\(a_N\)-1 + \(b_N\)-1) mod \(M\) (обозначение \(X\) mod \(M\) обозначает остаток от деления \(X\) на \(M\), например, 7 mod 4 = 3, 6 mod 2 = 0).

Блоки данных, для которых нельзя построить контрольный блок, удовлетворяющий указанному свойству, считаются подозрительными и их передача по сети не разрешается.

Ваня хочет поступить на работу программистом в фирму Macrohard, и в качестве вступительного задания ему поручили написать процедуру построения контрольного блока для заданного блока данных. Помогите ему!

Входные данные

В первой строке вводятся числа \(N\) и \(M\) (1 <= \(N\) <= 1000, 2 <= \(M\) <= \(10^9\)). Следующая строка содержит блок данных, для которого следует построить контрольный блок, числа разделены пробелами.

Выходные данные

В первой строке выведите YES, если для данного блока данных можно построить контрольный блок, и NO, если нельзя. В случае, если контрольный блок построить можно, во второй строке выведите контрольный блок. Числа разделяйте пробелами. Если решений несколько, можно выдать любое из них.

Примеры
Входные данные
4 2
0 0 0 0
Выходные данные
YES
0 0 0 0 
Входные данные
4 2
0 1 0 0
Выходные данные
NO
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Найдите количество чисел \(Z\), удовлетворяющих неравенству \(A\) ≤ \(Z\) ≤ \(B\), таких, что в записи \(Z\) в двоичной системе счисления используется ровно 2 единицы. Например, если \(A\)=10; \(B\)=20; то таких чисел 5 (это числа \(10=1010_2\); \(12=1100_2\); \(17=10001_2\); \(18=10010_2\); \(20=10100_2\)).

Входные данные

На вход программы поступают два числа, записанных через пробел — \(A\), \(B\) ( 0 ≤ \(A\), \(B\) ≤ \(10^9\))

Выходные данные

Выведите одно число – количество чисел \(Z\).

Примеры
Входные данные
10 20
Выходные данные
5
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Двое играют в следующую игру. Из кучки спичек за один ход игрок вытягивает либо 1, либо 2, либо 1000 спичек. Выигрывает тот, кто забирает последнюю спичку. Кто выигрывает при правильной игре?

Входные данные

Вводится одно натуральное число — \(N\) ( 1≤ \(N\) ≤ 10000) начальное количество спичек в кучке.

Выходные данные

Выведите 1, если выигрывает первый игрок (тот, кто ходит первым), или 2, если выигрывает второй игрок.

Примеры
Входные данные
2
Выходные данные
1
Входные данные
3
Выходные данные
2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes
Задан одномерный массив "пузырьков", каждый из которых может быть одного из четырех цветов. Можно уничтожить группу подряд идущих пузырьков одинакового цвета и получить за это \(K^2\) очков (K - количество пузырьков). Требуется уничтожить все пузырьки и подсчитать максимальную сумму очков.

Сережа - большой любитель игр на сотовом телефоне. Недавно он скачал из интернета новую игру "Пузырьки 1D". Опишем правила игры.

Исходная позиция в игре представляет собой \(N\) пузырьков, расположенных вертикально в ряд. Каждый пузырек окрашен в один из четырех цветов - красный, зеленый, синий или желтый. Назовем группой несколько следующих подряд пузырьков одинакового цвета, непосредственно сверху и снизу от которых находятся либо пузырьки другого цвета, либо границы ряда пузырьков.

За один ход разрешается выбрать любую группу, состоящую хотя бы из двух пузырьков, и взорвать ее. За взрыв группы, содержащей K пузырьков, игрок получает K2 очков. После взрыва группы пузырьки, которые находились сверху, опускаются вниз.

Например, ниже на рисунке показана позиция, содержащая 10 пузырьков. В ней четыре группы, содержащие 3, 2, 4 и 1 пузырек, соответственно. Если взорвать группу, содержащую четыре пузырька, то игрок получит 16 очков, и верхние 5 пузырьков опустятся вниз. В получившейся позиции 6 пузырьков, и две группы по 3 пузырька в каждой.

По заданной начальной позиции в игре выясните, сможет ли Сережа уничтожить все пузырьки, и если да, то какое максимальное количество очков он сможет заработать.

Входные данные

На вход программы поступает одна строка, состоящая из букв "R", "G", "B и "Y", описывающая начальную позицию. Буквы задают цвета пузырьков в порядке просмотра сверху вниз ("R" означает красный пузырек, "G" – зеленый, "B" – синий, а "Y" – желтый). В заданной позиции не менее двух и не более 100 пузырьков.

Выходные данные

Выведите одно число – максимальное количество очков, которое сможет заработать Сережа. Если уничтожить все пузырьки невозможно, выведите 0.

Пояснения

В первом примере следует действовать следующим образом: сначала надо взорвать группу из четырех красных пузырьков, получив 16 очков. Затем надо взорвать в любом порядке получившиеся две группы по 3 пузырька, получив по 9 очков за каждую.

Примеры
Входные данные
RRRGGRRRRG
Выходные данные
34
Входные данные
RB
Выходные данные
0

Страница: << 12 13 14 15 16 17 18 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест